

Exhaust gasses contain Carbon Monoxide, an odorless and colorless gas. Carbon Monoxide is poisonous and can cause unconsciousness and death. Symptoms of Carbon Monoxide exposure can include:

- Dizziness
- Nausea
- Headache
- Weakness and Sleepiness
- Throbbing in Temples
- Muscular Twitching
- Vomiting
- ness Inability to Think Coherently

IF YOU OR ANYONE ELSE EXPERIENCE ANY OF THESE SYMPTOMS, GET OUT INTO THE FRESH AIR IMMEDIATELY. If symptoms persist, seek medical attention. Shut down the unit and do not restart until it has been inspected and repaired.

A WARNING DECAL is provided by WESTERBEKE and should be fixed to a bulkhead near your engine or generator. WESTERBEKE also recommends installing

CARBON MONOXIDE DETECTORS in the living/sleeping quarters of your vessel. They are inexpensive and easily obtainable at your local marine store.

CALIFORNIA PROPOSITION 65 WARNING

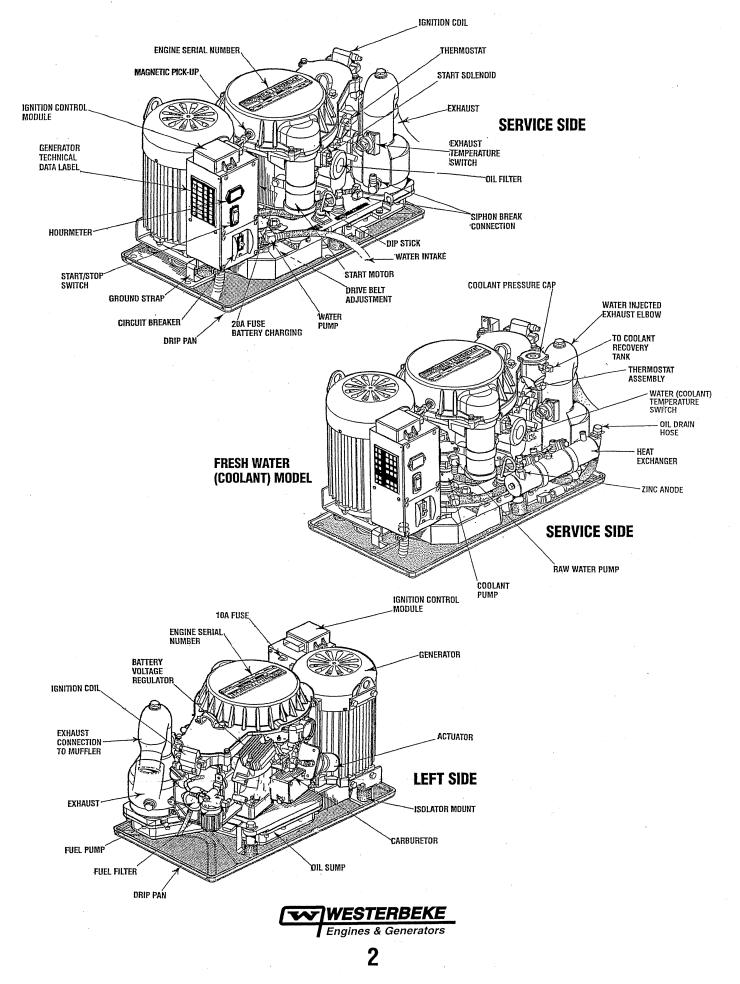

Marine diesel and gasoline engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

TABLE OF CONTENTS

Parts Identification2
Testing for Overhaul
Troubleshooting Guide4
Disassembly Procedures
Sealants and Lubricants7
Torque Specifications9
Special Tools
Service Standards/Repair Limits12
Engine Disassembly15
Inspection and Measurement20
Engine Assembly27
Oil Pump
Lubrication System
Fuel System
Fuel Filter/Fuel Pump33
Starter Motor
Carburetor35
Raw Water Pump
Engine Tuning
Engine Adjustments
Compression Test
Water Pump Belt
Ignition Timing39
Oil Pressure Test40
Spark Plugs41
Thermostat41
Choke Solenoid41
Valve Clearance42
Timing Belt Replacement/Adjustment43
Electronic Governor
Wiring Diagram
Specifications
AC Generator47
BC Winding Resistance
BCG Internal Wiring Diagram48
By passing the Overspeed Board48
BCG/BPMG Troubleshooting Chart
Flushing the Cooling System
English to Metric Chart
Standard Metric Conversion Data52
Index

PARTS IDENTIFICATION

TESTING FOR OVERHAUL

HOW TO DETERMINE ENGINE OVERHAUL PERIOD

Cause of Low Compression

Generally, the time at which an engine should be overhauled is determined by various conditions such as lowered engine power output, decreased compression pressure, and increased fuel and oil consumption. The lowered engine power output is not necessarily due to trouble with the engine itself, but is sometimes caused by improper oil, clogged filters or a faulty carburetor.

The decrease in compression pressure is caused by many factors. It is, therefore, necessary to determine a cause or causes on the basis of data produced by periodic inspection and maintenance. Oil analysis on a seasonal basis is a good means of monitoring engine internal wear. When caused by worn cylinders or piston rings, the following symptoms will occur:

- 1 Low engine power output
- 2 Increased fuel consumption
- 3 Increased oil consumption
- 4 Hard engine starting
- 5 Noisy engine operation

These symptoms often appear together. Symptoms 2 and 4 can result also from improper fuel regulation or a faulty carburetor. They are caused also by defective electrical devices such as the battery, starter or spark plugs. Therefore it is desirable to judge the optimum engine overhaul time by the lowered compression pressure caused by worn cylinders and pistons plus increased oil consumption. Satisfactory combustion is obtained only under sufficient compression pressure. If an engine lacks compression pressure, incomplete combustion of fuel will take place even if other parts of the engine are operating properly. To determine the period of engine overhaul, it is important to measure the engine compression pressure regularly. At the same time, the engine speed at which the measurement of compression pressure is made should be checked because the compression pressure varies with engine rpm. The engine rpm can be measured at the front end of the crankshaft.

NOTE: To test engine compression see the ENGINE ADJUSTMENT section of this manual.

OVERHAUL CONDITIONS

Compression pressure tends to increase a little in a new engine until piston rings and valve seats have been broken in. Thereafter, it decreases gradually with the progress of wear of these parts.

When decrease of compression pressure reaches the repair limit, the engine must be overhauled.

The engine requires overhaul when oil consumption is high, blowby evident, and compression values are at minimum or below.

TROUBLESHOOTING GUIDE 3.0 KW BPMG

When toubleshooting indicates an electrical problem, see the ELECTRICAL SYSTEM WIRING DIAGRAM, as this may reveal other possible causes of the problem which are not listed below.

The following troubleshooting tables are based upon certain engine problem indicators and the most likely causes of the problems

PROBLEM	PROBABLE CAUSE	PROBLEM	PROBABLE CAUSE
Engine does not crank.	 Voltage drop at starter solenoid terminal. Main 10 amp fuse blown. Battery is low or dead. Loose battery connections. Faulty wire connection. Faulty start switch. Faulty pc board Faulty starter solenoid Water filled cylinders. 	Engine misfires.	 Poor quality fuel. Faulty ignition control module. Dirty flame arrester. Faulty ignition wires. Spark plugs are worn. Binding actuator linkage. High exhaust back-pressure. Valve clearances are incorrect. Valve clearances are incorrect.
Engine starts, runs and then shuts down.	 Faulty shutdown switch, (oil pressure, or exhaust temperature). Faulty overspeed switch. Dirty fuel/water separator filter. Clogged fuel line. Low oil level in sump. Faulty fuel pump. No fuel 	Engine backfires.	 Faulty ignition control module. Incorrect timing. Engine is flooded. See Engine is flooded under Engine cranks but fails to start. Dirty flame arrester. Faulty ignition coil. High exhaust back-pressure.
Engine starts, runs but does not come up to speed.	 Clogged fuel filter Faulty mag-pickup sensor. Electronic governor controller faulty, Fuel pump. Fuel supply to engine restricted. Actuator linkage binding. Actuator or electrical connections faulty. 	Engine overheats.	 Blockage in cooling water flow: inspect the raw water intake, intake strainer, pump impellers, and look for broken or seperated hoses. Belts may be loose or broken. Obstructed by-pass hose. Low oil level. Wrong SAE type oil in the engine.
Engine cranks but fails to start. (Engine will crank for 15 seconds)	 Air intake restricted. Exhaust restricted. Out of fuel. Engine is flooded. Faulty carburetor. (<i>See Carburetor page</i>) Faulty choke solenoid Faulty ignition coil. 		 Oil diluted with fuel. Relief valve is stuck. Faulty oil pump. Faulty engine bearings. Boat heeled over too much. Faulty oil filter.
Engine hunts.	 6. Bad spark plugs 1. Controller gain adjustment needed. 	High oil pressure.	 Dirty oil or wrong SAE type oil in the engine. Relief valve is stuck.
	 Faulty fuel pump. Faulty PC board. Improper drive belt tension. Low DC battery voltage. High exhaust back pressure. Dirty fuel filter Generator overload. Valves need adjustment. 	No DC charge to the starting battery.	 Faulty connections to battery charging control. 20 amp fuse blown/faulty. Faulty voltage regulator. Faulty magneto.

Engines & Generators

TROUBLESHOOTING GUIDE 3.0 KW BPMG

PROBLEM	PROBABLE CAUSE
Blue Exhaust Smoke Discharge from the Engine	 Lube oil is diluted. High lube oil level. Crankcase breather hose is clogged. Valves are worn or adjusted incorrectly. Piston rings are worn or unseated.
Black exhaust smoke Discharge from the Engine	 Dirty flame arrester. Faulty carburetor. Idle mixture jet too rich. Accelerator diaphragm leaking. Valves are worn or incorrectly adjusted. Piston rings are worn or unseated.
Poor performance at generator speed	 Contaminates in carburetor. Faulty fuel pump/contaminated. Electronic governor controller needs adjustment.
Starter stays energized after start	 Faulty MPU suspected. Check MPU. Faulty starter solenoid.
Unit starts and runs at idle speed	 Check MPU signal. 1.5 - 2.0 VAC cranking. Faulty overspeed board.

Note: *MPU voltages to PC board:* Cranking: 1.5 - 2.0 VAC Running: 4.0 - 5.0 VAC (2200 rpm)

WESTERBEKE

Engines & Generators

DISASSEMBLY / ASSEMBLY PROCEDURES

DISASSEMBLY

- Before disassembly and cleaning, carefully check for defects which cannot be found after disassembly and cleaning.
- Drain water, fuel and oil before disassembly.
- Clean or wash the engine exterior.
- Do not remove or disassemble the parts that require no disassembly.
- Perform disassembly in a proper order using proper tools. Keep disassembled parts in order. Apply oil when necessary. Take special care to keep the fuel system parts from intrusion of dust and dirt.
- Parts must be restored to their respective components from which they were removed at disassembly. This means that all parts must be set aside separately in groups, each marked for its component, so that the same combination or set can be reproduced at assembly.
- Pay attention to marks on assemblies, components and parts for their positions or directions. Put on marks, if necessary, to aid assembly..
- Carefully check each part or component for any sign of faulty condition during removal or cleaning. The part will tell you how it acted or what was abnormal about it more accurately during removal or cleaning.

The parts assembled with the silicone can be easily disassembled without use of a special method. In some case however, the sealant between the joined surfaces may have to be broken by lightly striking with a mallet or similar tool. A flat and thin gasket scraper may be lightly hammered in between the joined surfaces. In this case, care must be taken to prevent damage to the joined surfaces. For removal of the oil pan, use a special "oil pan remover".

ASSEMBLY

- Wash all parts, except for oil seals, O-rings, rubber sheets, etc., with cleaning solvent and dry them with pressure air.
- Always use tools that are in good condition and be sure you understand how to use them before performing any job.
- Use only good quality lubricants. Be sure to apply a coat of oil, grease or sealant to parts as specified..
- Be sure to use a torque wrench to tighten parts for which torques are specified.
- When the engine is assembled, new gaskets and O-rings must be installed.

Surface Preparation

Thoroughly removes all substances deposited on the gasket application surfaces using a gasket scraper or wire brush. Check to ensure that the surfaces to which the silicone gasket is to be applied is flat. make sure that there are no oils, greases and foreign substances deposited on the application surfaces. Do not forget to remove the old sealant that remains in the bolt holes.

GASKET INFORMATION

Engines & Generators

The engine has several areas where form-in-place RTV silicone gaskets are used such as LOCTITE 598 or GE RTV 100. To ensure that the gasket fully serves its purpose, it is necessary to observe some precaution when applying the gasket. Bead size, continuity and location are very important. Too thin a bead could cause leaks and too thick a bead could be squeezed out of location causing blocking or narrowing of the fluid feed lines. To eliminate the possibility of leaks from a joint, it is necessary to apply the gasket evenly without a break while observing the correct bead size.

The gasket material used in the engine is a room temperature vulcanization (RTV) type and is supplied in a 14oz (400 gram) applicator/tube. The RTV hardens as it reacts with the moisture in the atmospheric air and can be used for sealing both engine oil and coolant assemblies.

APPLICATION OF SEALANTS AND LUBRICANTS

	Items Parts Name	Three Bond	Three Bond	Instantaneous Adhesive Three Bond	Three Bond	Loctite	Bond	Insulated Grease	Teflon Grease	Cold-resistant Lithium Grease	Grease for OBM	4st Engine Oil	Specified Gear Oil	Oil Compound Jyoetsu-Silicone	Loctite Silicone Sealant	Remarks
		1342	1373B	1741	12078	518	G17							KS-64		
	Cylinder liner											٠				Inside wall
	Piston											•				Ring groove, Periphery
	Piston ring											•				Periphery
	Piston pin											•				Periphery
	Connecting rod											٠				Inside big and small ends
	Metal (Cylinder block, crank case)	1									1	٠				Both sides
	Crank shaft (thrust place)											•				Sliding surfaces
	Crank shaft oil seal		•							•						Lips
	Crank case cylinder mating surface			,		٠										Joint part
	Valve (IN, EX)						İ					•				Shaft, Stem head
	Valve stem seal (IN, EX)						1					٠		1		Lips
	Retainer			1								•				Complete
	Valve spring seat						1					•				Complete
R	Valve spring			1								•				Complete
ğ	Camshaft											•				Bearing, cam
Engine block	Camshaft oil seal									•						Lips
ЦÜ	Cam pulley bolt	•														Thread
	Rocker arm											•				Bearing, Slipper
	Rocker arm shaft	1										•				Shaft, side
	Tappet adjust screw									T	 	•				Complete
	Washer (rocker arm, t=0.5)		1							1		•				Complete
	Washer (rocker arm, t=2.5)	1										•				Complete
	Spring (rocker arm, free length 30 mm and 51 mm)	1	[İ –						1						Complete
	Fuel pump											•				Periphery of O-ring, end of plunger
	Oil pump											•				2ml at Suction port and discharge port , Boss part O-ring
	(ø1.5 – 10.7) Oil pump O-ring (ø1.5 – 8.5) (ø1.5 – 15.5)											• • •				
	Oil pressure switch	•														Thread

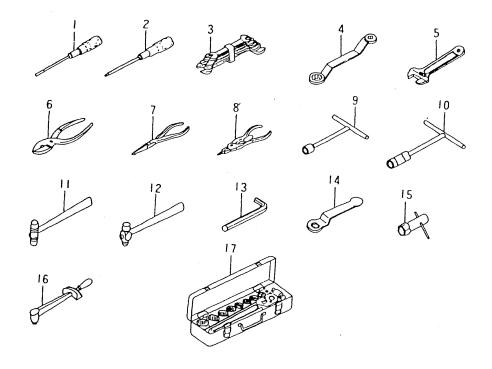
WESTERBEKE Engines & Generators

APPLICATION OF SEALANTS AND LUBRICANTS

	Items Parts Name	Three Bond	Three Bond	 Instantaneous Adhesive Three Bond 	Three Bond	Loctite	puog G17	Insulated Grease	Teflon Grease	Cold-resistant Lithium Grease	Grease for OBM	4st Engine Oil	Specified Gear Oil	 A Oil Compound Ayoetsu-Silicone 		Remarks
	Oil filter											•			•	Seal
	Oil filter bolt	•														Thread
	Plunger ass'y											•				Inside (Pour 1ml)
	Filter cap, O-ring											•				Periphery
	Solenoid switch							•								Terminal
	Spark plug cap													•		Spark plug insertion part
S K	Opain plug cap						•									High tention cord
Engine block	Starter motor							•								Terminal
gine											•					Spread at pinion part slightly
ш		•														Bolt and screw for Reel
	Starter case									•						Friction plate, reel shaft part, Spiral spring, rachet
	Starter seal rubber			•												
	Engine oil											•				Oil; at oil change 1000ml at overhaul 1200ml
	Oilpan gasket				•											
	Bolt (upper pump case)	•														Thread
	Upper pump case										•					Impeller sliding surfaces Joint part for water pipe guide

WESTERBEKE Engines & Generators

8


TORQUE SPECIFICATIONS

				r					
	Item	Thread size	Bolt or Nut	Tightening Torque					
		Thicad Size		N-m	kg-m	lb-ft			
	Cylinder Block – Cylinder Head	M8 × 1.25	Bolt	28~30	2.8~3.0	20~22			
	Cylinder block - Cylinder nead	M6 × 1.0	Bolt	.8~10	0.8~1.0	5.8~7.2			
	Outin dan Black - Oranie Oran	M8 × 1.25	Bolt	23~25	2.3~2.5	17~18			
	Cylinder Block – Crank Case	M6 × 1.0	Bolt	8~10	0.8~1.0	5.8~7.2			
	Connecting Rod	M7 × 1.0	Bolt	11~13	1.1~1.3	8.0~9.4			
	Tappet Lock Nut	M6 × 0.75	Nut	6~8 ,	0.6~0.8	4.4~5.8			
	Flywheel Cup	M16 × 1.5	Nut	70~90	7~9	51~65			
Engino	Drive (Timing) Pulley	M26 × 1.0	Nut	34~36	3.443.6	25~26			
Engine	Driven (Camshaft) Pulley	M6 × 1.0	Bolt	10~12	1.0~1.2	5.8~8.7			
	Plunger Assembly	M16 × 1.5	y	19~21	1.9~2.1	12~15			
	Oil Filter	M20 × 1.5	-	18	1.8	13			
	Oil Pressure Switch	PT1/8		7~9	0.7~0.9	5~6			
	Cylinder Head Cover	M6 × 1.0	Bolt	8~10	0.8~1.0	5.8~7.2			
	Inlet Manifold	M6 × 1.0	Bolt	8~10	0.8~1.0	5.8~7.2			
	Spark Plug	M12 × 1.25		15~20	1.5~2.0	11~15			
	Engine Assembly	M8 × 1.25	Bolt	29~31	2.9~3.1	21~22			

WESTERBEKE Engines & Generators

9

REQUIRED TOOLS

- 1. Straight-point screwdriver (200 mm)
 - do. (150 mm)
 - do. (100 mm)
- 2. Phillips screwdriver (200 mm)

– do. –	(150 mm)
– do. –	(100 mm)

- 3. Set of wrenches (6 pieces)
- 4. Box wrenches (10×13)

 $- do. - (17 \times 21)$ $- do. - (21 \times 23)$

- 5. Adjustable wrench (300 mm)
- 6. Pliers
- 7. Needle-nose pliers
- 8. Snap ring pliers
- 9. T-bar socket wrench (10 mm)

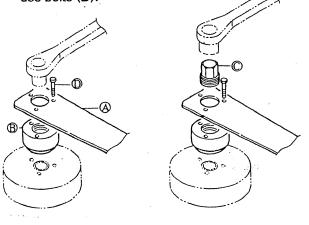
– do. –	(12 mm)
– do. –	(13 mm)
— do. —	(17 mm)

- 10. T-bar universal wrench (10 mm)
 - do. (12 mm)
 - do. (13 mm)
- 11. Plastic hammer
- 12. Hammer
- 13. L-shape hexagon wrench (8 mm) - do. - (10 mm)
- 14. Box wrench (16 mm)
- 15. Socket wrench (16 mm)
- 16. Torque wrench (100 N m)
 - do. (12 N m)
 - − do. − (5 N − m)

Pre-setting type box torque wrench

- $(10 \text{ mm}, 7\text{N} \text{m}) \dots$ for the tappet lock nut
- 17. Socket wrench set

USING SPECIAL TOOLS

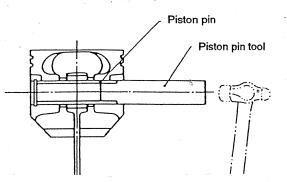

5. How to Use Special Tools

1. Flywheel cup puller

(1) When disassembling

Fasten the tools A and B to the flywheel with the bolts D and remove the magneto nut (right-hand screw) with the socket wrench of the correct size 24.

Next, screw tool \mathbb{O} into tool \mathbb{B} and tighten \mathbb{O} with the socket wrench of the correct size 24. The flywheel can be removed. Be sure to use bolts (D).

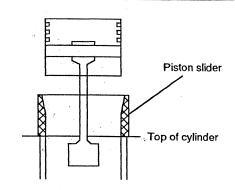

2 When reassembling

Before replacing the flywheel make sure that the magneto key has properly been set. After setting the washer and nut on the crank shaft, fasten tools (A) and (B) to the flywheel and tighten the nut.

Tightening torque: 70-90 N-m (7.0-9.0 kg-m) (51-65 lb-ft)

2. Piston pin tool

After removing the piston pin clip, insert the tip of the piston pin tool into the piston pin hole and lightly tap the other end of the tool with a hammer. Hold the piston with your hand to prevent damage to the connecting rod. (When inserting the piston pin again, take the same care as removing.)



3. Piston slider

This tool is to be used for inserting the piston into the cylinder. After inserting the piston into the tapered end of the piston slider, set the piston slider together with the piston tightly on the top of the cylinder and insert the piston into the cylinder by pushing the piston crown with fingers.

Note:

Don't stop inserting the piston into the cylinder until all the piston rings enter the cylinder.

SERVICE STANDARDS/REPAIR LIMITS/MAINTENANCE

Part Name	Check/Inspect	Standard Value/Maintenance	Repair Limit
Cylinder Head	1. Carbon deposit on the combustion chamber	1. Remove carbon deposit and clean.	
	 Scratch depth and distortion of the mounting surface. 	 Scratch depth or distortion is 0.1mm (0.004in) or more. 	 Repair (set #240-#400 sandpaper the surface plate and polish the surface for repair. Use #600 sandpaper for finishing).
	3. Corrosion in the mated surface.	3. Repair or replace depending on the situation.	
	4. Clogged cooling water passage.	4. Clean and remove foreign matters.	
Cylinder	1. Deposit in the water jacket.	1. Clean and remove foreign matters.	
	 Wear of the inside cylinder diameter. Measure the bore with a cylinder gauge 	2. 59.00mm (2.3228in)	 59.06mm (2.3252in) or more (If wear is exceeding the repair limit, replace or bore the cylinder and finish by honing. Over-sized piston is 0.5mm. refer to item 4).
	3. Seizure	 Replace or use an over-sized piston after boring the cylinder. 	
	 Scratch and wearing down in the cylinder liner. 	4. When the liner cannot be repaired by means of #400-#600 sandpaper because it is extremely scratched or scored, or the difference between the maximum wear and minimum wear is 0.06mm (0.0024in) or more.	 Bore and hone to Ø59.5K0.01mm (Ø2.3425 ± 0.0004in).Use oversize piston and rings.
	 Mating surfaces of the cylinder and cylinder head. or more. 	 When the depth of scratch or distortion in/of the mating surface is 0.1mm (0.004in) 	5. Use #400 sandpaper on the surface plate and polish the surface. Use #600 sandpaper for finishing.
Piston	1. Outside Diameter	1. Diameter: 58.960mm (2.3213in)	1. Outer Diameter: 58.90mm (2.3189in) or more.
	 a) Measure the diameter at a point 7mm above the lower end of the piston skirt. 		
	b) Piston Clearance	 b) Piston clearance: 0.020-0.055mm (0.0008-0.0022in) 	 b) Piston Clearance: 0.15mm (0.0059in) or more
	2. Carbon deposit on the piston crown and in the piston ring groove.	2. Remove carbon residuum and clean.	
	3. Scratch on the sliding surface.	 Repair with #400-#600 sandpaper depending on the situation. 	
	4. Measurement of clearance between the piston ring and ring groove.	4. Top: 0.04-0.08mm (0.0016-0.0031in) 2nd: 0.03-0.07mm (0.0012-0.0028in) Oil: 0.01-0.18mm (0.0004 - 0.0071in)	4. Top: 0.10mm (0.004in) or more 2nd: 0.09mm (0.0035in) or more Oil: 0.21mm (0.0083in) or more
		NOTE: To be replaced with a new oil ring, when replacing with new top and/or second rings. Sandpaper means water proof paper.	
	5. Measurement of diameter of the piston pin hole.	5. Clearance between pin and hole Loose: 0.002-0.012mm (0.00008-0.00005in)	5. 0.04mm (0.0016in) or more
Piston Ring	1. End Gap NOTE: Measurement of the end gap: when no ring gauge is available, measure the lower part of the cylinder bore.	 Replace with new piston ring if wear of the cylinder liner is within the repair limit. 	
	a) Top b) Second c) Oil	 a) Top: 0.15-0.35mm (0.006-0.014in) b) Second: 0.30-0.50mm (0.012-0.020in) c) Oil: 0.20-0.7mm (0.008-0.028in) 	 a) Top: 0.5mm (0.020in) or more b) Second: 07mm (0.028in) or more c) Oil Ring: to be replaced with a new oil ring, when replacing with new top and/or second rings. Sandpaper means water proof paper.
Piston Pin	1. Outer diameter	1. 16.00mm (0.6299in)	1. 15.97mm (0.629in) or less.
Crankshaft	1.Deflection of the crankshaft. Both the main bearings of the crankshaft should be supported with V-blocks.	1. Less than 0.05mm (0.002in)-both ends.	1. 0.05mm (0.002in) or more.
	2. Outer diameter of the crankpin.	2. 29.98mm (1.1803in)	2. 29.95mm (1.179in) or less.
	3. Outer diameter of the bearing.	3. 31.99mm (1.2594in)	3. 31.97mm (1.259in) or less.
	4. Oil clearance of the bearing.	4. 0.012 - 0.044mm (0.0005 - 0.0017in)	4. 0.06mm (0.002in) or more.
	5. Side clearance of the crankshaft.	5. 0.1 - 0.2mm (0.004 - 0.008in)	5. 0.6mm (0.024in) or more.

Engines & Generators

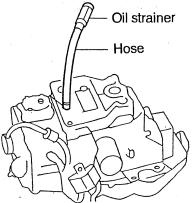
SERVICE STANDARDS/REPAIR LIMITS/MAINTENANCE

Part Name	Check/Inspect	Standard Value/Maintenance	Repair Limit
connecting Rod	1. Inner diameter of the small end.	1. 16.01mm (0.630in)	1. 16.04mm (0.631in) or more.
_	2. Oil clearance of the big end.	2. 0.015 - 0.041mm (0.0006 - 0.0016in)	2. 0.060mm (0.002in) or more.
	3. Side clearance of the big end.	3. 0.1 - 0.25mm (0.004 - 0.01in)	3. 0.6mm (0.024in) or more.
lagneto	Inition timing	BTDC 5° - 5° (electric ignition advance)	
	 Spark performance 	10mm (0.4in) or more/500 rpm (measured by genuine spark tester.	
	 Spark plug 	NGK DCPR6E	
	 Spark gap 	0.8 - 0.9mm (0.032 - 0.035in)	1.2mm 9 0.0047in) or more
	 Alternator output 	12V, 130W (5000 rpm)	
	Resistance of coils		
-	Between white wire and yellow wire	0.27 - 0.41Ω	
	Between red-white wire and	110,0000	
	black wire	148 - 222Ω	
	Between black-red wire and blue wire	12.5 - 18.8Ω	
	Between yellow-red wire and yellow -red wire	1.40 - 2.10Ω	
	 ESG for high speed ESO for high speed 	Restricting at 6250 rpm	
	ESG for low speed	Reducing at 2000rpm	
gnition Coil	 Resistance of primary coil between black wire and orange wire Resistance of secondary coil 	0.26 - 0.35Ω	
	between high tension cord and core	6800 - 10200Ω	
attery	Output	12V - 70AH to 12V - 100AH	
,		12V 0.6KW	
	Clutch	Over-running clutch	
	1) Brush length	1) 12.5mm (0.49in)	1) 9.5mm (0.37in) or less
	2) Commutator under-cut	2) 0.5-0.8mm (0.02-0.03in)	2) 0.2mm (0.008in) or less
	3) Commutator diameter	3) 30mm (1.18in)	3) 29 mm (1.14in) or less
use	Capacity	120A	
hermostat	Operation of thermostat	 Start to open: 60°C ± 1.5°C (140 ± 3°F) 	If the valve opens at room temperature, replace the thermostat.
		 Temperature at which valve opens full: 75°C (167°F) 	While immersing the thermostat in water raise the water temperature and check th temperature at which the valve opens.
Pump Impeller	Worn-out, crack	Replace	
Pump Case Liner	Worn-out	Replace	
Guide Plate	Worn-out	Replace	
ntake Valve Exhaust Valve	1) Valve Clearance	IN: 0.13 - 0.17mm (0.005 - 0.007in) EX: 0.18 - 0.22mm (0.007 - 0.008in)	
	2) Outer diameter of valve stem	IN: 0.13 - 0.17mm (0.005 - 0.007in) EX: 0.18 - 0.22mm (0.007 - 0.008in)	5.46mm (0.215in) or less 5.44mm (0.214in) or less
	3) Inner diameter of valve guide	IN: 0.13 - 0.17mm (0.005 - 0.007in) EX: 0.18 - 0.22mm (0.007 - 0.008in)	5.55mm (0.218in) or more 5.57mm (0.219in) or more
	4) Clearance to valve stem	IN: 0.13 - 0.17mm (0.005 - 0.007in) EX: 0.18 - 0.22mm (0.007 - 0.008in)	0.07mm (0.0028in) or more 0.10mm (0.004in) or more
	5) Contact width of valve seat	IN: 0.13 - 0.17mm (0.005 - 0.007in) EX: 0.18 - 0.22mm (0.007 - 0.008in)	2.0mm (0.079in) or more 2.0mm (0.079in) or more
/alve Spring	Free length	35mm (1.38in)	33.5mm (1.319in) or less
Camshaft	1) Height of cam (both IN and EX)	1) 23.90mm (0.94in)	1) 23.75mm (0.935in) or less
	2) Outer diameter of bearing	2) Pulley side: 17.98mm (0.0708in) Oil pump side:: 15.97mm(0.629in)	2) 17.95mm (0.707in) or less 15.95mm (0.628in) or less
	3) Clearance of holder (bearing)	3) 0.02 - 0.05mm (0.0008 - 0.0020in)	3) 0.09mm (0.0035in) or more
Rocker Arm and Shaft	 Inner diameter Outer diameter 	1) 13.01mm (0.512in) 2) 12.99mm (0.511in)	1) 13.05mm (0.514in) or less 2) 12.94mm (0.509in) or less
	3) Shaft Clearance	3) 0.006 - 0.035mm (0.00024 -0.00138in)	3) 0.6 mm (0.0024in) or less

SERVICE STANDARDS/REPAIR LIMITS/MAINTENANCE

Part Name	Check/Inspect	Standard Value/Maintenance	Repair Limit
Engine Block	With de-compressor	0.4 ± 0.1 MPa (5 ± 1 kg/cm ² , 71 psi)	Pay heed to pressure leak in compression from the rotation, sliding and sealing parts.
	Without de-compressor (rocker arm in EX side is removed)	0.93±0.1 MPa (9.5±1 kg/cm², 135 psi)	
Carburetor	Setting mark	3H8A	
	 Throttle/Venturi bore 	23/11.5mm	
	 Main jet (MJ) 	#68	
	 Main air jet (MAJ) 	#135	
	 Inner diameter of main nozzle 	2.2mm	
	 Slow jet (SJ) 	#42	
	 Slow air jet (SAJ) 	#115	
	• Opening angle of throttle (at W.O.T.)	80°	
	 Pilot screw (PS) - Blind 	1-3/4	
	 Fuel level (from flange surface to float bottom 	14mm (0.55in)	
	 Resistance of PTC* heater for auto-bystarter at 20° C (68° F) 	20Ω	
	(*PTC: positive temperature coefficient thermistor)		
	 Idle speed (clutch in) 	900 rpm	
Dil Pump	1) Inner diameter of pump body	1) 29.04mm (1.143in) or more	
	 Clearance between outer rotor and body 	2) 0.36mm (0.014in) or more	κ.
	3) Height of outer rotor	3) 14.96mm (0.589in) or less	
	 Clearance between rotor and body side 	 0.11mm (0.0043in) or more (incl. wear of the pump cover) 	
	 Clearance between outer rotor and inner rotor 	5) 0.16mm (0.006in) or more	

Bolts, nuts, and washers are indicated by the symbols below.


H820 - Hexagon headed bolt
N8 - Normal hexagon nut
L8 - Hexagon lock nutDiameter 8 mm
Diameter 8 mmW6 - Plain washer
SW6 - Spring washerDiameter 6 mm
Diameter 6 mmScrew 620 - Pan headed screwDiameter 6 mm
Diameter 6 mm

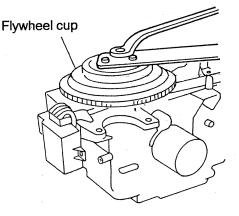
Removing Parts

Oil strainer

① Cut the hose band and then remove the oil

strainer with the hose from the nipple.

Ignition coil


- (1) Remove the plug cap from the spark plug.
- ② Remove the ignition coil fitting bolt and then remove ignition coil.

C. D. Unit

(1) Remove the C.D. unit fitting bolt then remove the C.D. unit.

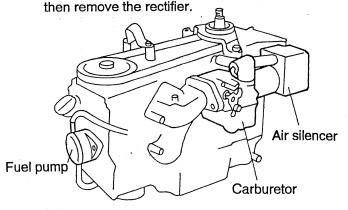
Magneto flywheel cup

 Remove the fiywheel cup with a special tool according to the instructions of "How to Use Special Tools".

Alternator

 Remove the alternator fitting screw and then remove the alternator.

Pulser coil


 Remove the pulser coil fitting screw and then remove the pulser coil.

Startor motor and starter solenoid

- (1) Remove the starter motor fitting bolt
 - and then remove the starter motor.
- ② Pull the starter solenoid from the electric bracket.

Rectifier

1) Remove the rectifier fitting bolt

Carburetor

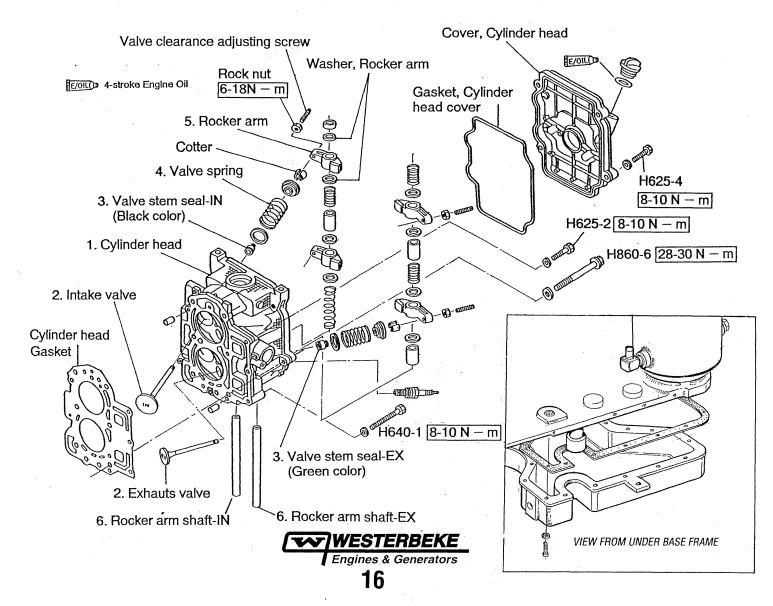
① Remove the carburetor fitting bolt


and then remove the carburetor together with the air silencer, insulator and gaskets.

Fuel pump

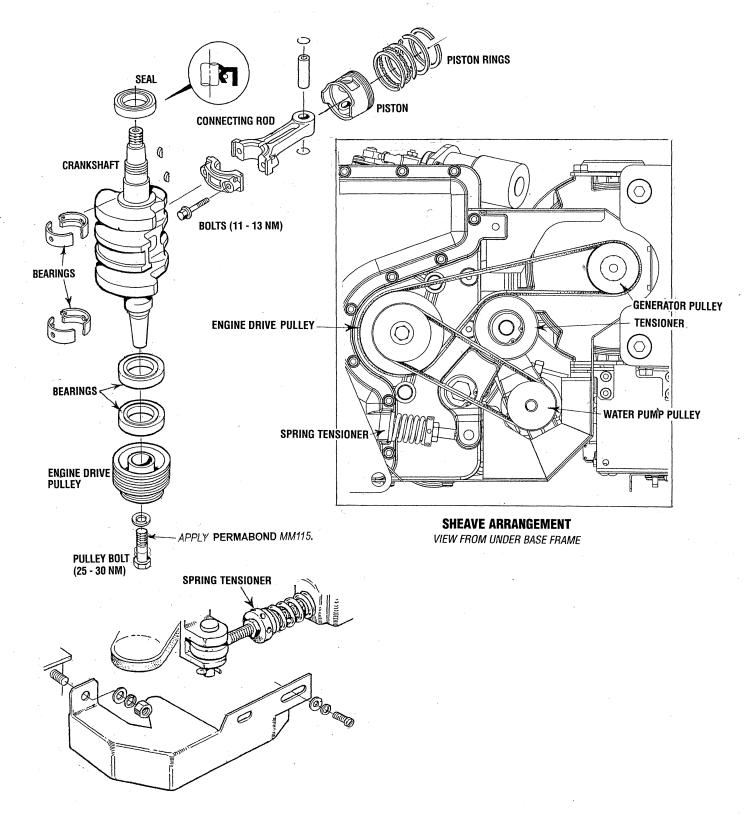
WESTERBEKE Engines & Generators

15


 Remove the fuel pump fitting bolt then remove the fuel pump.

190

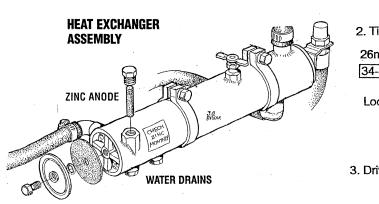
NO	Part name	Check point, etc.
NO	Fait name	•
	Gasket & O-ring	Note: Must be replaced by new parts whenever they are once removed for disassembling.
1	Cylinder head	 Carbon deposit in combustion chamber Surface width and roughness between valve seat and valve Scratch or distortion
2	Intake valve Exhaust valve	 Surface width and roughness between valve seat and intake/exhaust valve Carbon deposit
3	Valve stem seal – IN Valve stem seal – EX	Black color: Wear of contact surface with valve stem Green color: Wear of contact surface with valve stem
4	Valve spring	Weekness
5	Rocker arm	Wear of three contact points: contact surface with cam, rocker arm shaft and rocker arm washer.
6	Rocker arm shaft	Wear of contact surface with rocker arm

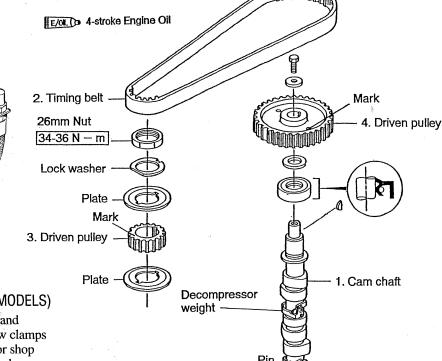

POWER UNIT Cylinder head, valves and relating parts

NO. Part name Check point, etc. Oil clearance at main bearings • Oil clearance at big end of connecting rod Note: Align the tab of the metal bearing with the notch in the Crankshaft 1 cylinder/crank case Note: There are two type of metal bearings (Thickness code: Black color and Brown color) Note: Pay attention to the connecting rod orientation for 2 reassembling Connecting rod ("UP" mark must face the magneto side) Note: Mate the markings of the cap and connecting rod with 3 Connecting rod cap each other ("UP" mark must face the magneto side) Note: Tighten the bolts in careful manner: Gradually tighten the two bolts alternately several times 4 Connecting rod bolt so that they are evenly tightened. Note: Pay attention to the piston direction 5 Piston ("UP" mark faces the magneto side) Note: Don't use the clip that is once removed. 6 Piston pin clip Be sure to use a new part for reassembling. Oil pressure sw mark L/518 Loctite "518" E/OIL 4-stroke Engine Oil 5. Piston Cylinder et 6. Piston pin, Clip Metal bearing 2. Connecting rod 1. Crank shaft 3. Connecting rod cap Crank case L/518 Plunger -4. Connecting rod bolt E/OL Oil filter 11-13 N - m H850-4 **Oil strainer** H630-6 23-25 N – m WESTERBEKE 8-10 N - m Engines & Generators

POWER UNIT Crank shaft, pistons, cylinder/crank case and related parts

17




WESTERBEKE Engines & Generators 18

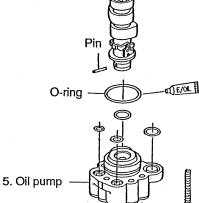
NO. Part name		Check point, etc.	
1	Cam shaft	Smooth movement of decompressor weight Note: This part is very weak against impact.	
2	Timing belt	Note: Be sure to keep clean free from oil and grease	
3	Drive pulley	Note: Be sure to keep clean free from oil and grease Note: Pay attention of direction ("UP" mark faces the magneto side)	
4	Driven pulley	Note: Be sure to keep clean free from oil and grease Note: Pay attention of direction ("UP" mark faces the magneto side)	
5	Oil pump		

Engines & Generators

POWER UNIT Cam shaft, oil pump and related parts

HEAT EXCHANGER (FRESH WATER COOLED MODELS)

The heat exchanger should be removed, inspected, and cleaned. Install a new zinc and fresh hoses with new clamps at reassembly. If suspect, a local automotive radiator shop should be able to clean and pressure test the heat exchanger.


The water injected exhaust elbow should be removed and inspected for defects and corrosion. Also inspect the siphon break hose and its connections.

Flush out the coolant recovery tank and its connecting hose.

Loosen the raw water pump, remove the drive belt and then remove the raw water pump.

Remove the engines coolant pump. For servicing, refer to *COOLANT PUMP*.

Remove the thermostat assembly and clean the interior chambers. Inspect the seals in the pressure cap when reassembling. Replace the thermostat and gasket.

POWER UNIT

Measurement with vernier calipers

Valve seat width

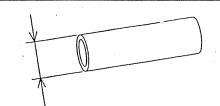
Standard value	Out of the limit to use
1.0 mm 0.0393 in	If 2.0 mm (0.079 in) or more, it needs replacement or repair.

Valve spring free length[®]

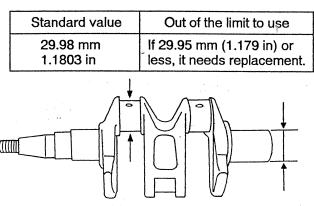
Standard value	Out of the limit to use
35 mm	If 33.5 mm (1.319 in) or
1.38 in	less, it needs replacement.

Measurement with micrometer

Outer diameter of piston skirt


Standard value Out of the limit to use	
58.960 mm 2.3213 in	If 58.90 mm (2.3189 in) or less, it needs replacement.

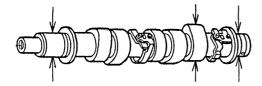
Piston clearance (Clearance between piston and cylinder)


Standard value	Out of the limit to use
0.020 - 0.055 mm 0.0008 - 0.0022 in	If 0.15 mm (0.0059 in) or more, it needs replacement.

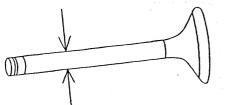
• Outer diameter of piston pin

Standard value	Out of the limit to use
16.00 mm 0.6299 in	If 15.97 mm (0.629 in) or less, it needs replacement.

• Outer diameter of crank pin


Outer diameter of crank shaft in metal bearing

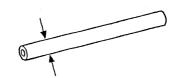
Standard value	Out of the limit to use
31.99 mm 1.2594 in	If 31.97 mm (1.259 in) or less, it needs replacement.


Cam shaft

	Standard value	Out of the limit to use
Outer dia. in bearing (Upper)	17.98 mm 0.708 in	If 17.95 mm (0.707 in) or less, it needs replacement.
Outer dia. in bearing (Lower)	15.97 mm 0.629 in	If 15.95 mm (0.628 in) or less, it needs replacement.
Cam height IN & EX	23.90 mm 0.94 in	If 23.75 mm (0.935 in) or less, it needs replacement.

Valve stem

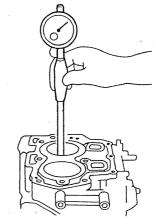
	Standard value	Out of the limit to use
IN	5.48 mm 0.216 in	If 5.46 mm (0.215 in) or less, it needs replacement.
EX	5.46 mm 0.215 in	If 5.44 mm (0.214 in) or less, it needs replacement.



• Clearance between valve guide and valve stem

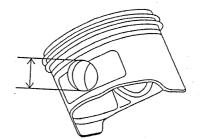
	Standard value	Out of the limit to use
IN	0.008 - 0.04 mm 0.003 - 0.0016 in	If 0.07 mm (0.0028 in) or more, it needs replacement.
EX	0.025 – 0.057 mm 0.0010 – 0.0022 in	If 0.10 mm (0.004 in) or more, it needs replacement.

Outer diameter of rocker arm shaft


Standard value	Out of the limit to use
12.99 mm	If 12.94 mm (0.509 in) or
0.511 in	less, it needs replacement.

Measurement with cylinder gauge

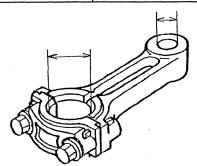
• Inner diameter of cylinder


Standard value	Out of the limit to use
59.00 mm 2.3228 in	If 59.06 mm (2.3252 in) or more, it needs replacement.

Diameter of piston pin hole

TWESTERBEKE Engines & Generators 21

Standard value	Out of the limit to use
16.002 mm 0.630 in	Depends on clearance between pin and hole.

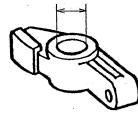


 Clearance between piston pin and piston pin hole

Standard value	Out of the limit to use
0.002 - 0.012 mm 0.00008 - 0.0005 in	If 0.04 mm (0.0016 in) or more, it needs replacement.

• Oil clearance at big end of connecting rod

Standard value	Out of the limit to use
0.015 – 0.041 mṁ 0.0006 – 0.0016 in	If 0.060 mm (0.002 in) or more, it needs replacement.

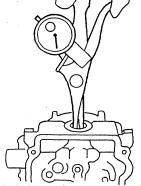


• Inner diameter of small end of connecting rod

Standard value	Out of the limit to use
16.01 mm 0.630 in	If 16.04 mm (0.631 in) or more, it needs replacement.

Inner diameter of rocker arm

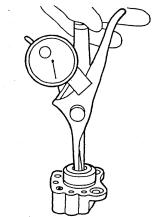
Standard value	Out of the limit to use
13.01 mm 0.512 in	If 13.05 mm (0.514 in) or more, it needs replacement.



• Oil clearance between rocker arm and shaft

Standard value	Out of the limit to use
0.006 mm — 0.035 mm 0.00024 — 0.00138 in	If 0.06 mm (0.0024 in) or more, it needs replacement.

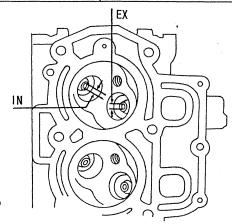
Inner diameter (bearing) of cam shaft holder


	Standard value	
Upper (Cylinder head)	18.01-18.025 mm 0.709 — 0.710 in	
Lower (Oil pump)		

Oil clearance between cam shaft and holder

		Standard value	Out of the limit to use
1	Upper	0.02 - 0.05 mm 0.0008 - 0.0020 in	0.09 mm (0.0035 in) or more
	Lower	0.02 — 0.05 mm 0.0008 — 0.0020 in	0.09 mm (0.0035 in) or more

If the oil clearance is out of the limit, replace cylinder head and/or cam shaft and/or oil pump.

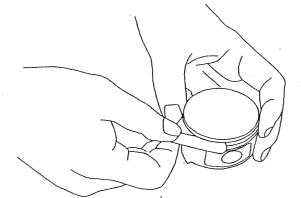


Inner diameter of valve guide

ERBEKE

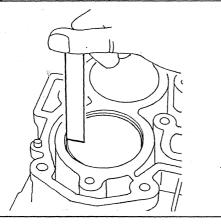
Engines & Generators

	Standard value	Out of the limit to use
IN	5.51 mm 0.217 in	If 5.55 mm (0.218 in) or more, it needs replacement.
EX	5.51 mm 0.217 in	If 5.57 mm (0.219 in) or more, it needs replacement.

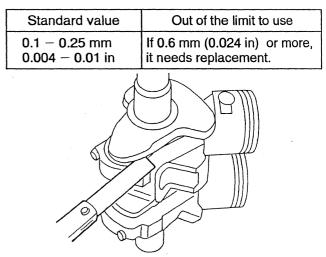


WESTERBEKE Engines & Generators 23

Measurement with thickness gauge

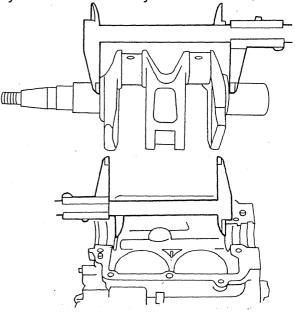

• Clearance between piston ring and ring groove

	Standard value	Out of the limit to use
Тор	0.04 – 0.08 mm 0.0016 – 0.0031 in	If 0.10 mm (0.004 in) or more, it needs replacement.
Second	0.03 – 0.07 mm 0.0012 – 0.0028 in	If 0.09 mm (0.0035 in) or more, it needs replacement.
Oil		If 0.21 mm (0.0083 in) or more, it needs replacement.


• Piston ring end gap

	Standard value	Out of the limit to use
Тор	0.15 — 0:35 mm 0.006 — 0.014 in	If 0.5 mm (0.020 in) or more, it needs replacement.
Second	0.30 — 0.50 mm 0.012 — 0.020 in	If 0.7 mm (0.028 in) or more, it needs replacement.
Oil	0.20 — 0.70 mm 0.008 — 0.028 in	

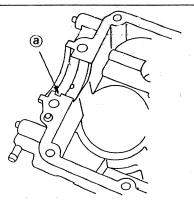
- Note:
- Set the piston ring by pressing it in the piston crown side.
- To be replaced with a new oil ring when replacing with new top and/or second rings.


• Side clearance at big end of connecting rod

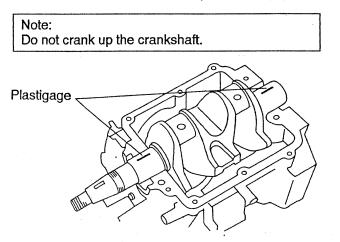
• Side clearance of crankshaft

Standard value	Out of the limit to use
0.1 — 0.3 mm 0.004 — 0.012 in	0.6 mm (0.024 in) more

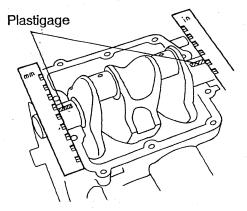
If the side clearance is out of the limit, measure length of the crankcase (cylinder side) and the crankshaft and replace crankshaft and/or cylinder-crankcase ass'y.



	Standard value
Crankshaft length	126.8 — 126.9 mm 4.992 — 4.996 in
Crankcase length	127.0 - 127.1 mm 5.000 - 5.004 in


- 5) Measurement with Plastigage[®]
- Oil clearance between crankshaft and metal bearing
 - 1) Wipe oil out of:
 - Crankshaft bearing journals
 - Metal bearings (both sides)
 - Bearing portions of cylinder and crankcase
 - 2) Install metal bearings into the cylinder and crankcase.

Note:

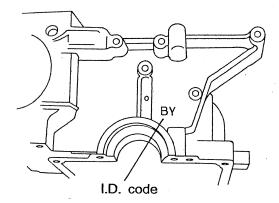

Align the tab of the bearing with the notch (a) in the cylinder and crankcase.

- 3) Install the crankshaft to cylinder.
- 4) Place a piece of the plastigage on the crankshaft main bearing journal.
- 5) Assenble the crankcase.
 Tighten the crankcase bolts to the specified torque in the indicated order.
 Torque: : 23-25 N m (2.3-2.5 kg m)

- 6) Disassemble the crankcase.
- 7) Measure the compressed plastigage width at its widest point.

Standard value	Out of the limit to use
0.012 - 0.044 mm 0.0005 - 0.0017 in	0.06 mm (0.002 in) or less

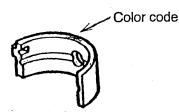
If the oil clearance is out of the limit, measure inside diameter of the cylinder/crankcase bearing holders and the crankshaft bearing journals. There are within the standard value, replace metal bearings.


 Cylinder/Crankcase bearing holder inside diameter code

The codes (2 sort) are stamped on the upper side of the crankcase.

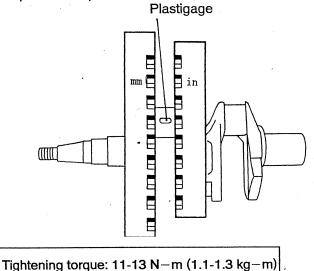
I.D. code	Standard value	Appling metal bearing
A, X	35.000 - 35.008 mm 1.3780 - 1.3783 in	Brown color paint
B, Y	35.008 - 35.016 mm 1.3783 - 1.3786 in	Black color paint

Remark: I.D. code A and B — For upper bearing holder


I.D. code X and X — For lower bearing holder

Engines & Generators

Metel bearing thickness code


The codes are painted on the side of the bearing.

Color code	Thickness
Brown	1.488 — 1.494 mm 0.0586 — 0.0588 in
Black	1.494- — 1.500 mm 0.0588 — 0.0590 in

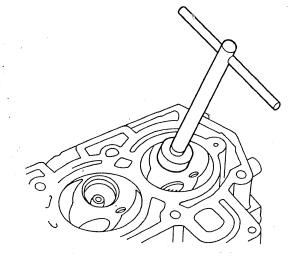
• Oil clearance at big end of connecting rod

- 1) Wipe oil out of the crank pin and big end bearing of connecting rod.
- Set the Plastigage to the crank pin and fit it to the connecting rod. Tighten the bolt with the specified torque.

(8.0-9.4 lb - ft)

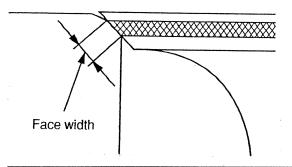
.....

Note:


Do not turn the connecting rod.

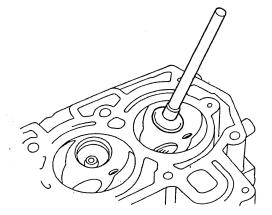
3) Remove the connecting rod and check the Plastigage reading.

Standard value	Out of the limit to use
0.015 — 0.041 mm 0.0006 — 0.0016 in	If 0.06 mm (0.002 in) or less, it needs replacement


Repair of valve seat

- 1) Plane the valve seat face with the 45 ° valve seat cutter.
- 2) Depending on the situation (the contact position of the seat is too high or too low), use the 30° cutter or 60° cutter and then repair the surface area with the 45° cutter.

3) Apply Prussian Blue compound (or equivalent) evenly on the seat face. While turning the valve with the valve lapper, check face width between the valve and valve seat. If necessary, repair the face width with the valve seat cutter.


	Standard value	Limit that needs repair
IN	1.0 mm 0.04 in	2.0 mm or more 0.08 in
EX	1.0 mm 0.04 in	2.0 mm or more 0.08 in

4) After repair of the valve seat, lap the valve for good fitting.

Apply lapping compound thinly on the seat and lap the valve while turning and tapping it with the valve lapper.

Remarks: Since the lapping compound is supplied

in a set of three grades (coarse, medium and fine), lap the valve with all of them in order from coarse, medium and fine.

Notes:

- When using lapping compound of a different grade, completely wipe out the previously used compound beforehand.
- After lapping is complete, wash the valve and valve seat after completely wiping the compound out of them.

POWER UNIT

Reassembling Engine

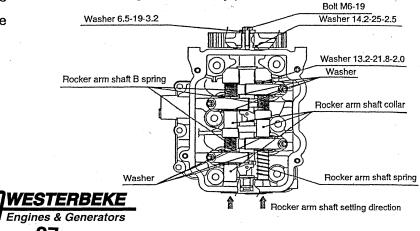
Reassemble the engine in the reverse order of disassembling with careful attention to the following points.

- (1) Cylinder head and related parts
- Valve stem seal
- There are two kinds of valve stem seals, namely, the valve stem seal for the intake valve is identified by the black color while the other for the exhaust valve is identified by the green color.
- On installing the valve stem seal to the cylinder head, apply the engine oil for the 4-stroke cycle engine to the insertion point. For setting the valve stem seal, press it into the valve guide with fingers.

Intake valve, Exhaust valve

- The intake valve and exhaust valve are different from each other, namely the intake valve is identified by the "IN" mark while the exhaust valve is identified by the "EX" mark.
- Apply the engine oil for the 4-stroke cycle engine to the valve stem. Then, insert the valve into the valve guide while twisting it.
- After setting the cotter on-to the valve stem, tap the valve shaft end with a small plastic hammer several times for stabilizing the cotter in setting.
- After reassembling the valves, apply the engine oil for the 4-stroke cycle engine to the upper side of the retainer and its periphery.

- Cam shaft
- Carefully press the oil pump pin so that it does not come out of the cam shaft.
- When reassembling the cam shaft to the cylinder head, apply the engine oil for the 4-stroke cycle engine to the cam and bearing beforehand and then insert the cam shaft into the cylinder head from the oil pump side while twisting it with care not to turn over the oil seal lip.

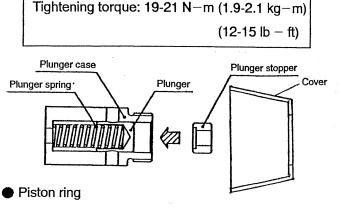

Rocker arm

 Temporarily set the tappet adjusting screw and tappet adjusting nut to the rocker arm.

Note:

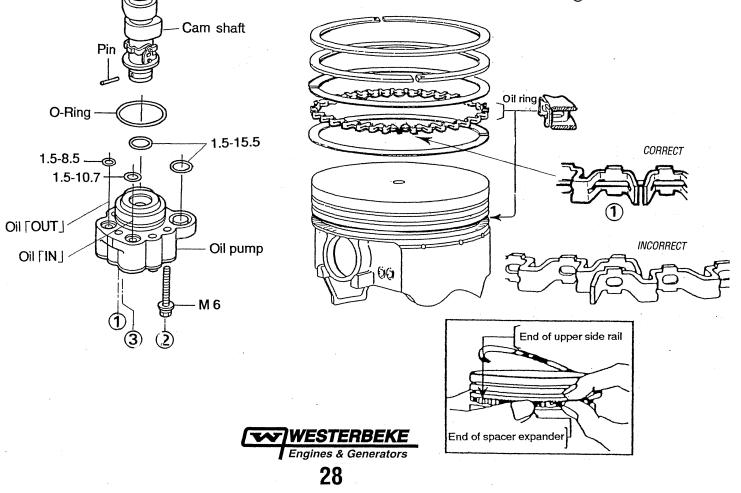
Set the tappet adjusting nut with the chamfered side down.

- Apply the engine oil for the 4-stroke cycle engine to the rocker arm shaft.
- Set the rocker arm shaft from the side of the oil pump of the cylinder head. Pay heed to orientation of the rocker arm shaft so that the tapped hole side is positioned in the oil pump side.
- Set the rocker arm shaft spring, washer, rocker arm, rocker arm shaft collar to the rocker arm shaft from the bottom side in this order.
- When setting the above-mentioned parts, apply the engine oil to every part.

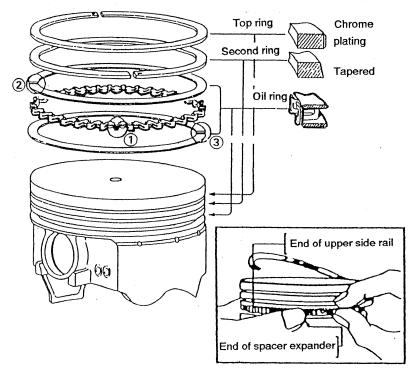

Oil pump

- Pour the engine oil of approximately 2.0 ml into the oil pump through the inlet and outlet ports.
- Apply the engine oil for the 4-stroke cycle engine to the O-rings (1.5-10.7ø, 1.5-8.5ø, 1.5-15,5ø) and the O-ring at the boss before setting them in the oil pump.
- When assembling the oil pump to the cylinder head, carefully set it so that the cam shaft pin and the notch on the oil pump shaft meet each other.
- Fasten the oil pump with the three M6 bolts with the tightening torque and in the tightening order specified below.

Tightening order: (1), (2) and (3)

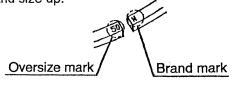

Tightening torque: 5-6 N - m (0.5-0.6 kg - m)

- Plunger
 - When setting the plunger stopper into the plunger case, pay attention to the orientation of the plunger stopper so that it is set as shown.
 - When assembling the plunger assembly to the cylinder, fasten it together with the cover.



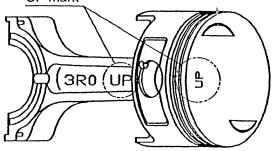
Fitting oil rings to piston

1. Set the spacer expander in the oil ring groove, and check to see if both the ends of it correctly link with each other as shown in ①.



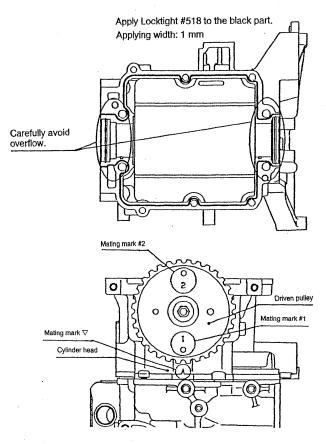
- 2. While holding down the slit of the spacer expander with a thumb, set the upper rail as its slit is deviated from the slit of the spacer expander at an angle of 90° in the counterclockwise direction. ②
- In the same manner as the preceding step, set the lower rail as its slit is deviated from the slit of the spacer expander at an angle of 90° in the clockwise direction. (3)

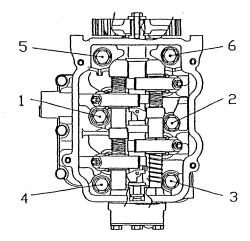
Fitting compression rings to piston


Fit the compression rings onto the piston in the correct order to start with the lower ring. Set each compression ring with the side marked with the brand and size up.

Check of correct setting of each piston ring

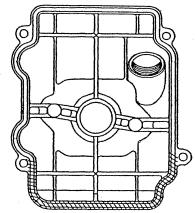
- Check to see if the slit of each piston ring is not set in the piston thrust direction or piston pin direction.
- 2. After the assembling work is complete, make sure that each piston ring is set as shown once again.
- Piston and Connecting rod
 - Assemble the connecting rod and connecting rod cap to each other as they were put together before removing. (Before removing the connecting rod cap, be sure to leave a marking at a mated point between the connecting rod and connecting rod cap as a reference for reassembling.)


UP mark


- The upper sides of the connecting rod cap, connecting rod and piston are identified by the "UP" mark.
- For inserting the piston and connecting rod assembly into the cylinder, use the piston slider.
 Apply the engine oil for the 4-stroke cycle engine to the cylinder liner, piston rings before inserting the assembled piston.

- Cylinder and Crank case
 - When fitting the metal bearing to the cylinder and crank case, set the tab in the notch.
 - Apply the engine oil for the 4-stroke cycle engine to the metal bearing.
 - Degrease the mating surface between the cylinder and crank case.
 - Apply the Locktight #518 to either of the cylinder and crank case with careful attention to the applying part and width so as to avoid overflow.

- Fitting cylinder head to cylinder
 - Before fitting the cylinder head to the cylinder, set the piston at the top dead center.
 - When fastening the cylinder head, carefully tighten the bolts with the specified tightening torque and in the correct order.

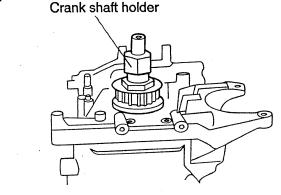


Tightening torque:

M8 bolt: 28-30 N - m (2.8-3.0 kg ^{^-} m)	
(20-22 lb - ft)	
M6 bolt: 8-10 N - m (0.8-1.0 kg - m)	
(5.8-7.2 lb - ft)	

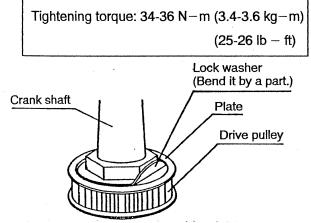
• Cylinder head cover

• Fit the gasket to the cylinder head cover and apply the Three Bond #1207B to the shaded part shown.


Apply the sealant to the shaded part. Shaded part (Part shown by slanted lines)

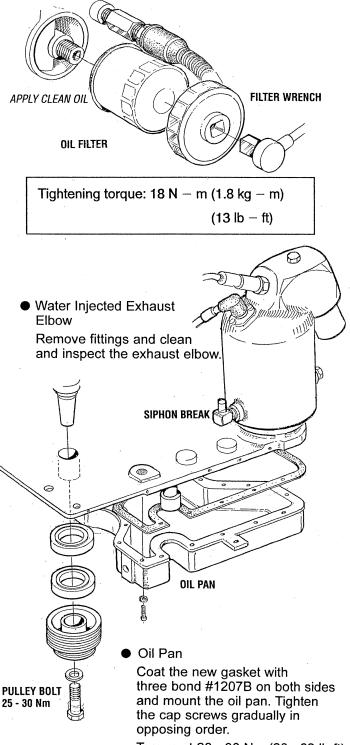

Tightening torque: 8-10 N-m (0.8-1.0 kg-m) (5.8-7.2 lb - ft)

Fuel pump


- Make sure that the marks "2" and "0" on the driven pulley and the mark " ▽ " on the cylinder head are aligned in a straight line.
- Apply the engine oil for the 4-stroke cycle engine to the top of the plunger and O-ring of the fuel pump.

Drive pulley

• For tightening the nut to fasten the drive pulley, use the crank shaft holder.

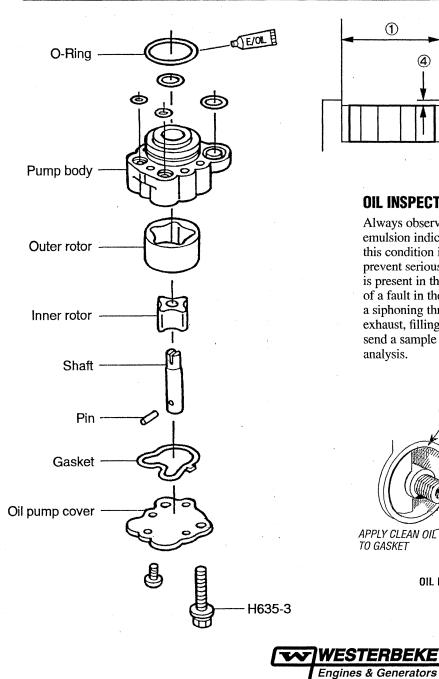

· After tightening the nut, bend up the lock washer

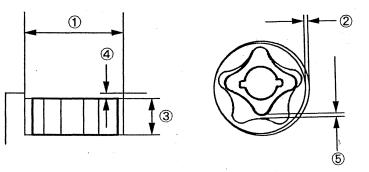
WESTERBEKE Engines & Generators 31

by a part.

Oil filter

• Apply the engine oil for the 4-stroke cycle engine to the rubber seal of the oil filter.

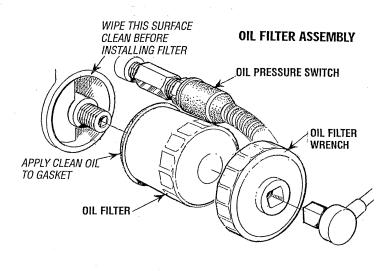

Torque at 28 - 30 Nm (20 - 22 lb-ft)


LUBRICATION SYSTEM

OIL PUMP

Using a micrometor, cylinder gauge, depth gauge and feeler gauge, measure the following oil pump clearances. Replace if worn or out of specification.

① Inner diameter of pump body	29.04 mm (1.143 in) or more
② Clearance between outer rotor and body	0.36 mm (0.014 in) or more
③ Heigth of outer rotor	14.96 mm (0.589 in) or less
④ Clearance between rotor and body side	0.11 mm (0.0043 in) or more (incl. wear of the pump cover)
5 Clearance between outer rotor and inner rotor	0.16 mm (0.006 in) or more



OIL INSPECTION

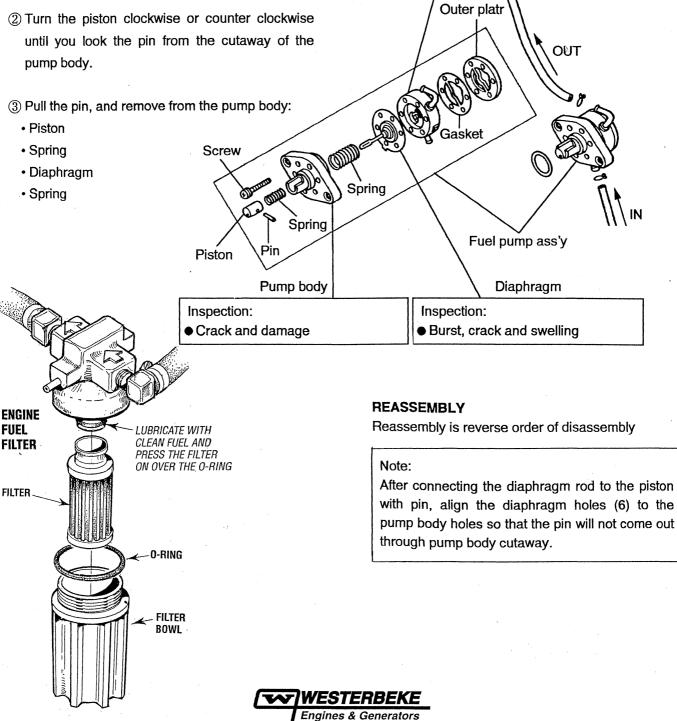
32

Always observe the old oil as it is removed. A yellow/gray emulsion indicates the presence of water in the oil. Although this condition is rare, it does require prompt attention to prevent serious damage. Call a competent mechanic if water is present in the oil. Water present in the oil can be the result of a fault in the exhaust system attached to the engine and/or a siphoning through the water cooling circuit into the exhaust, filling it up into the engine. Use an oil test kit and send a sample of the engine oil to a qualified oil test lab for analysis.

FUEL SYSTEM

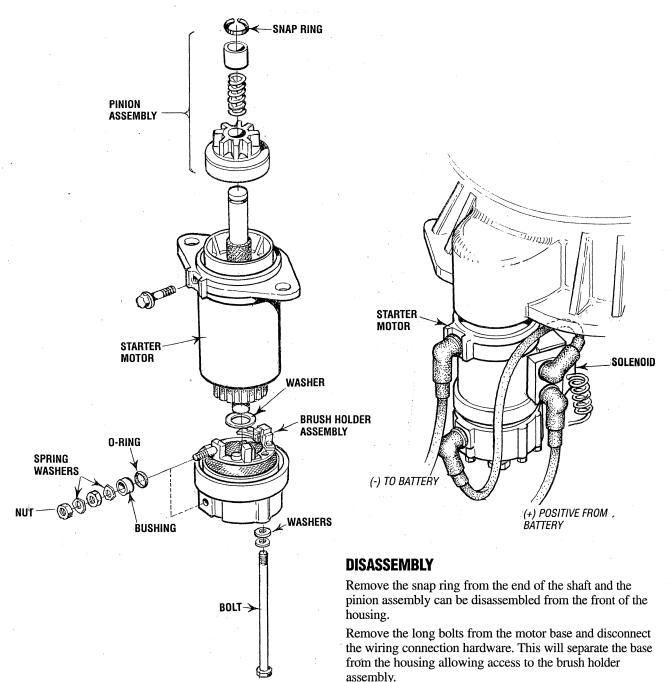
Valve body

Inspection:

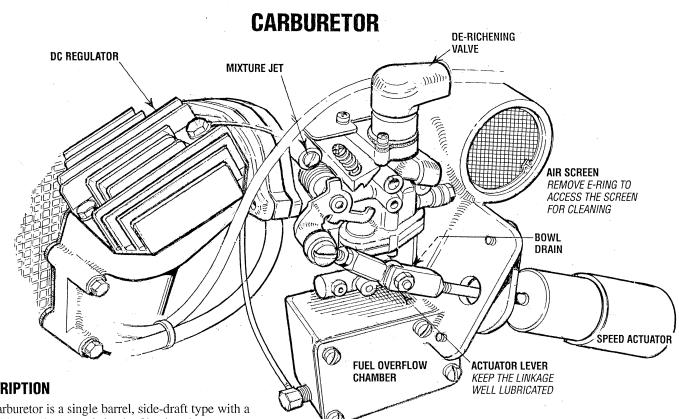

Wear and damage

FUEL PUMP

DISASSEMBLY

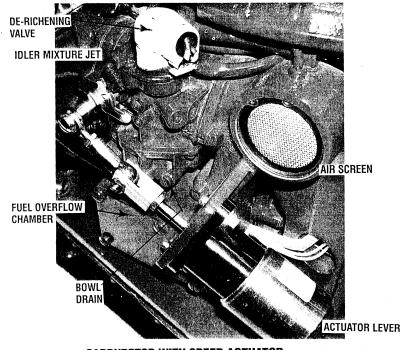

Before disassembly, make a aligning line on the out side of fuel pump for correctly reassembling.

- (1) Remove screw, and take off:
 - Outer plate
 - Gasket
 - Valve body
- until you look the pin from the cutaway of the pump body.


33

STARTER MOTOR

NOTE: This exploded view is to enable the customer to inspect clean and possiblty repair this starter motor, but parts are no longer available for this model motor.


DESCRIPTION

The carburetor is a single barrel, side-draft type with a cleanable metal screen air intake filter/spark arrester.

The choke is operated by a 12 VDC solenoid. The choke solenoid is activated when the start switch is depressed and is controlled by the I.C.M.

Air Screen/Flame Arrester

The air screen can easily be removed. Clean after the first 50 hours of operation and every 100 hours from then on. Clean the air screen in a water soluble cleaner such as GUNK.

CARBURETOR WITH SPEED ACTUATOR

Fuel Overflow Chamber

Excess fuel drains into the fuel overflow chamber but is drawn out again at start-up. This chamber should be kept free of contaminates. Cleaning every 250 operating hours should be sufficient unless there is a fuel problem.

Idler Mixture Jet

Adjustment is performed with the generator operating. Screw the jet slowly in until it seats, then back it out 2 to 3 turns. Maximum adjustment is 5 turns.

NOTE: An idle mixture jet adjusted too far off its seat can induce a sooty exhaust discharge at engine start-up and shut-down.

De-Richening Valve

The de-richening valve closes off a fuel port that is supplying additional fuel on a cold start after start up. This is a thermal electric device that slowly moves a needle outward when DC power is applied after start up to close this fuel port. To check this valve, remove from the carburetor (cold) and apply DC voltage across its electrical connections. The devise should get hot and the needle will slowly move outward. the devise will remain hot during engine operation

Carburetor Bowl Drain

A bowl drain slotted plug is located on the lower right corner of the carburetor bowl. This is located just inboard of the actuators ball joint/clevis.,

RAW WATER PUMP

WESTERBEKE Engines & Generators

36

DESCRIPTION

Coolant (fresh water) cooled generators have dual water pumps while the raw water cooled models use a single water pump. The pumps are essentially the same. The upper pump mounts to the top of the lower pump and has a tang on the shaft that fits into the shaft of the lower pump. Both pumps are driven simultaneously by the engines drive belt.

The following instructions apply to either pump.

PUMP OVERHAUL

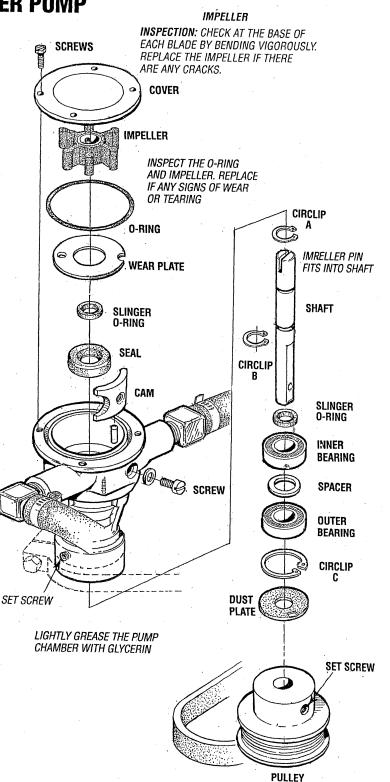
Disassembly

The pump, when removed from the engine will have the hose attachment nipple threaded into the inlet and outlet ports of the pump along with a drive pulley attached to the shaft of the pump. Remove these attachments noting their positions before starting the pump disassembly.

1. Remove the four cover plate screws, cover plate, and sealing O-ring.

Dual Pumps

Remove the cover screws and the cover will separate the upper pump (raw water) from the fresh water (coolant) pump as shown in the illustration.


Remove the wear plate to expose the impeller. Notice the direction the impeller blades are working in so as to install the replacement impeller with blades working in the same direction.

- 2. Remove the impeller using a pair of pliers, grasping the hub and pulling it out of the pump with a twisting motion.
- **3.** Remove the screw and sealing washer that hold the cam in place. Remove the cam and inner wear plate behind it.
- 4. Remove the brass circlip A and brass plate found behind the wear plate.
- 5. Remove the dust plate and circlip B.
- **6.** Support the pump body on an arbor press and with a drift, carefully press the shaft and bearing assembly out of the pump body out the pulley end.
- 7. Remove the slinger O-ring from the shaft.
- 8. Support the outer bearing and push the shaft out of the bearing.
- 9. Remove the spacer and circlip C.
- **10.**Support the inner bearing and push the shaft out of the bearing.

11.Remove the two piece ceramic shaft water seal.

Inspection

Inspect all parts and replace those showing wear and corrosion.

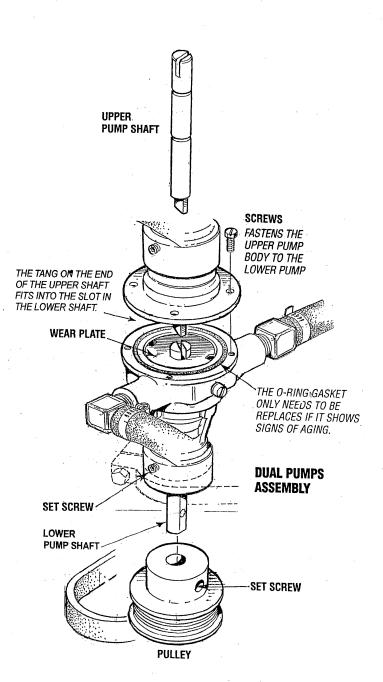
RAW WATER PUMP

Reassembly

Wipe the inside surface of the pump dry. Apply a film of glycerin supplied in the impeller kit to the inside pump surfaces and to the exposed area of the shaft lip seal.

- **1.** Install a new shaft seal in the pump body. Apply some glycerin to the lip of the seal.
- **2.** Install the circlip shaft. Support the outer bearing and push the shaft into the bearing until the bearing contacts the circlip.
- **3.** Install the spacer against the circlip. Support the inner bearing and push the shaft into the bearing until it contacts the spacer.
- 4. Warming the pump body should aid in installing the shaft and bearing assembly. Support the pump body on an arbor press. With a twisting motion, install the shaft and bearing assembly into the pump until the inner bearing seats and the outer bearing should just clear the boss for circlip B. Rotate the shaft. It should turn freely.
- **5.** Install circlip B and push the shaft assembly until the outer bearing just contacts circlip B and install the dust plate. Rotate the shaft. It should turn freely.
- 6. Put some glycerin on the outer surface of the ceramic seal seat and slide it over the shaft white ceramic facing out and seat it in the body of the pump. Place some glycerin on the inner area and with a twisting motion slide it over the shaft until the ceramic of the spring seal touches the white ceramic face.
- 7. Install the brass plate and circlip A.
- **8.** Install the wear plate, locking it in position on the dowel pin.

Dual Pumps


The wear plate is assembled above the impeller.

- **9.** Install the cam and place some gasket cement on the threads of the screw that secures it in place.
- **10.**Place some glycerin on the inner surface of the pump, the inner surface of the cover and the cover sealing O-ring and with a twisting motion install the impeller on the shaft of the pump. Install the covers O-ring and cover and secure the cover with the four cover screws.

NOTE: Install the new impellers with a rotating motion so the blades are working in the same direction of those of the removed impeller.

Dual Pumps

Assemble the upper pump to the lower pump as illustrated making sure the mounting screws are tight.

ENGINE TUNING TEST RUN AND INSPECTION AFTER COMPLETE ASSEMBLY

After reassembly, the engine must be tuned. This will ensure that the engine operates at its maximum efficiency.

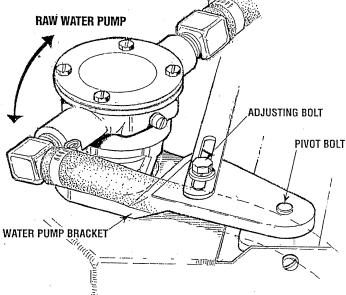
- Mount the engine on a test bench.
- Connect the electrical wiring. refer to the WIRING DIAGRAM.
- Connect the air intake line to the air cleaner.
- Connect the exhaust.
- Fill the engine cooling system with coolant and the engine oil sump with lube oil.
- Connect the fuel lines.
- Crank the engine with the starter (non-ignition operation) for about twenty seconds. This will pre-lubricate the engine internal components.
- Start the engine and allow it to run five minutes.
- Remove the cylinder head cover while the engine is running.

- Check that the engine oil is continuously circulating from the oil pump to the valve rockers through the cylinder head.
 - If there is no oil circulation or if the oil circulation is sluggish, stop the engine and make the appropriate repairs and adjustments.
- Re-install the cylinder head cover.
- Check the engine for oil, fuel, coolant, and air intake leakage.
- Check for abnormal noise and odor.
- Check for abnormal electrical charging.
- Check the engine fastening parts for looseness.
- Check the operation of the start/stop switch and LED panel lights.
- Adjust the engine speed to the specified value for generator operation.
- Stop the engine to complete the tuning procedure.
- Additional tightening after test run. Check the tightening condition of respective bolts and nuts after test run, and additionally tighten them with the specified tightening torques.

ENGINE COMPRESSION TEST

To check the engine's compression pressure, warm up the engine, then shut it down.

- 1. Remove both spark plug caps and both spark plugs.
- 2. Install a compression adapter and gauge in a spark plug hole.
- 3. Close the thru hull valve (seacock).
- 4. Crank the engine several times quickly so that the gauge pointer reaches it's maximum.


STANDARD COMPRESSION PRESSURE AT 500 RPM: 71 psi. (5.1 kgf/CM). (0.50 MPa) with decompressor 186 psi, (13.8 kgf/cm), (1.35 MPa) without decompressor

- 5. Test the compression pressure on the other cylinder. If either cylinder is below the standard try adding a small amount of engine oil through the spark plug hole and repeat the test.
 - (a) If additional oil causes an increase of pressure, the piston ring and/or cylinder may be worn or damaged.
 - (b) If additional oil does not increase compression pressure suspect poor valve contact, valve seizure or valve wear.
- 6. Reinstall the two plugs, connect the wires and open the thru hull valve (seacock).

WATER PUMP BELT

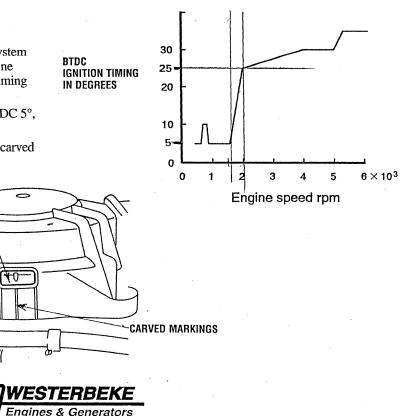
To remove, replace or adjust the belt, loosen the pivot bolt and release the adjusting bolt. Slide the water pump bracket to slacken the belt for removal. When replacing and adjusting the belt, set the belt very tight and tighten the bolt and nut.

The dual water pumps on the FRESH WATER COOLED MODELS use the same drive belt and the adjustment is the same.

NOTE: The adjustment is the same for the FRESH WATER COOLED MODEL dual pumps.

IGNITION TIMING

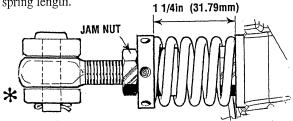
The magneto employs the electric ignition advance system that advances ignition timing with an increase of engine speed. While running the engine, check the ignition timing with a timing light.

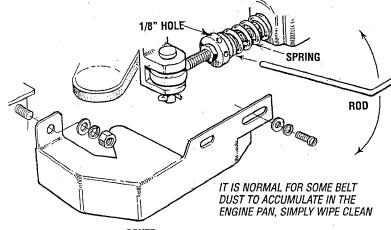

There are nine (9) markings (TDC, ATDC 5° and BTDC 5°, 10°, 15°, 20°, 25°, 30°, 35) on the flywheel cup.

Check the timing while observing the position of the carved marking on the starter case.

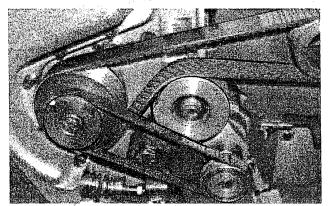
FLYWHEEL

10

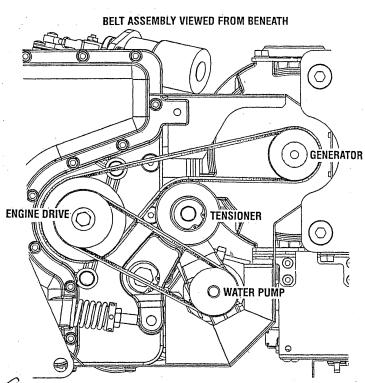

39


ADJUSTING THE DRIVE BELT

The engine's drive belt is located under the engine. To access the belt, for inspection and/or adjustment, remove the cover as shown. Inspect the belt for wear along the edges and for proper belt tension (belt should be tight).


The belt tension can be checked by meassuring the spring length.

To set the spring tension at 1-1/4", release the jam nut and use a rod such as an allen wrench to turn the adjusting nut (as shown) to tighten or loosen the spring tension, which in turn adjusts the tension on the belt.



COVER

BELT ASSEMBLY VIEWED FROM BELOW

★ IMPORTANT: REFER TO THE WESTERBEKE SERVICE BULLETIN (LAST PAGE IN THIS MANUAL) FOR THE ADDITION OF A SPACER ON THE 3.0BCG MODEL.

OIL PRESSURE

The lubricating system is a pressure feeding system using an oil pump. The engine oil is drawn from the oil sump by the oil pump, which drives the oil, under pressure, through the oil filter and various lubricating parts in the engine. The oil then returns to the oil sump to repeat the continuous cycle. When the oil pressure exceeds the specified pressure, the oil pushes open the relief valve in the oil pump and returns to the oil sump, keeping the oil pressure within it's specified range.

TESTING OIL PRESSURE

To test the oil pressure, remove the oil switch and install a mechanical oil pressure gauge in it's place, it will be necessary to connect the two switch wires together for the engine to run. After warming up the engine, with the engine speed at 2200 rpm, read the oil pressure gauge.

OIL PRESSURE: between 30 and 40 psi at 2200 rpm

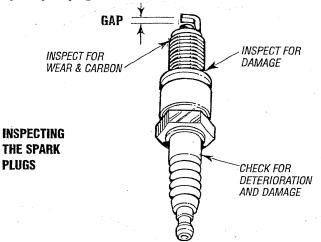
NOTE: A newly starter (cold) engine may have an oil pressure up to 40 psi. A warmed engine can have an oil pressure as low as 30 psi. Oil pressure will vary depending on the load placed on the generator.

OIL PRESSURE SWITCH/SENSOR

The generator is fitted with an oil pressure shutdown switch. Should the engine's oil pressure drop below the safe minimum, the switch will shut the engine down to prevent damage by interrupting the DC voltage to the ignition coil.

NOTE: The specified minimum oil pressure is 5 psi. A gradual loss of oil pressure usually indicates worn bearings. For additional information on low oil pressure readings, see the ENGINE TROUBLESHOOTING chart.

SPARK PLUGS

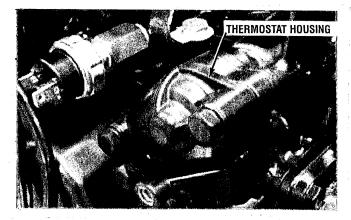

The spark plugs should be cleaned and re-gapped after the first 50 hour break-in period, then inspected every 250 hours thereafter and replaced as needed.

WARNING: *Do not remove the spark plugs while the engine is hot. Allow the engine to cool before removing them.*

SPARK PLUG GAP: 0.032 - 0.035in. (0.8 - 0.9mm).

SPARK PLUG TORQUE: 11 - 15 lb-ft (15 - 26 Nm).

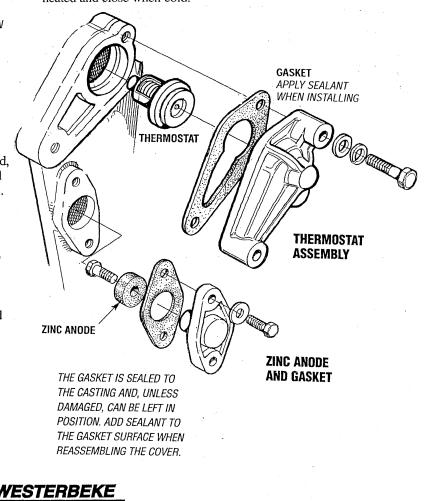
NOTE: Loctite Anti-Seize applied to the threaded portion of the spark plugs will retard corrosion, making future removal of the spark plugs easier.


CHOKE SOLENOID

The choke solenoid is a 12 volt DC operated unit that is an integral part of the carburetor. When the engine is cold, extra fuel is supplied to the engine. The choke is controlled by the ignition control module and requires no adjustments.

ZINC ANODE [Raw Water Cooled Models]

The zinc anode is located just below the thermostat cover and next to the oil filter. The purpose of the zinc anode is to sacrifice itself to electrolysis action taking place in the raw water cooling circuit, thereby reducing the effects of electrolysis on other components of the system. The condition of the zinc anode should be checked monthly and the anode cleaned or replaced as required. Spare anodes should be carried on board.


NOTE: Refer to the Cooling System pages for Fresh Water Cooled Thermostat and Zinc Anode assemblies.

THERMOSTAT [Raw Water Cooled Models]

A thermostat controls the coolant temperature as the raw water continuously flows through the closed cooling circuit. When the engine is first started, the closed thermostat prevents the water from flowing (some water is by-passed around the thermostat to provide coolant circulation in the engine block). As the engine warms up, the thermostat gradually opens. The thermostat is accessible and can be checked, cleaned, or replaced easily. Carry a spare thermostat and gasket.

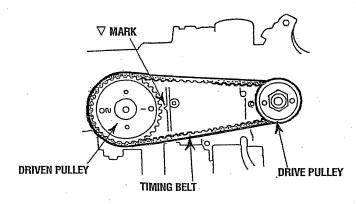
If you suspect a faulty thermostat, place it in a pan of water and bring to a boil. A working thermostat should open when heated and close when cold.

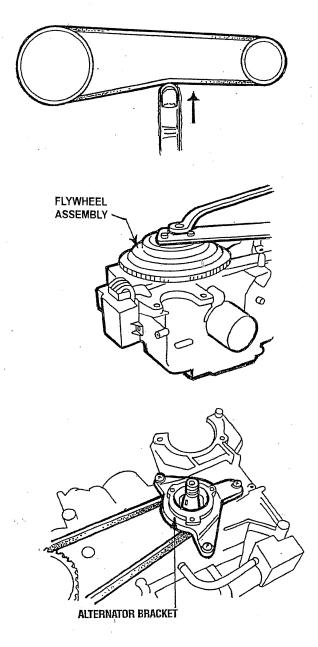
Engines & Generators

41

INSPECTION/REPLACING OF THE TIMING BELT

If cracks, wear, lengthening or other damage is found, replace the timing belt.


LIMIT OF ELONGATION: MORE THAN 10mm (0.4 IN) DEFLECTION BY PUSHING WITH YOUR FINGER


Replacement of the Timing Belt

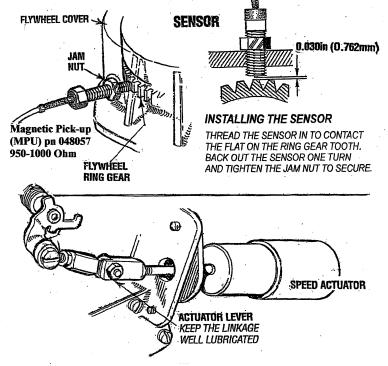
- 1. Remove the parts in the following order:
 - a. Spark Plugs
 - b. Voltage Regulator
 - c. Unplug MPU
 - d. Unplug Cam Sensor
 - e. Flywheel Housing
 - f. Flywheel assembly
 - g. Alternator Bracket
- 2. Turn the crankshaft and align "O" mark on the drive pulley and the "O" mark on the cylinder head.
- 3. Remove the timing belt from the driven pulley side.
- 4. Install the timing belt from the drive pulley side.

NOTE: After installing the timing belt, when the aligning " \bigcirc " mark on the drive pulley with " \bigcirc " on the cylinder block. Please confirm that the "1 & \bigcirc " or "2 & \bigcirc " mark on the driven pulley are aligned with the " \triangledown " mark on the cylinder head.

NOTE: Always keep the timing belt away from any oil and grease.

ELECTRONIC GOVERNOR

DESCRIPTION


The system is composed if three basic components.

1. Controller. The PC board that governs the system is located in the control panel.

2. Sensor. Mounted on the flywheel cover, the sensor measures the speed of the engine (via the ring gear).

3. Actuator. Electronically controls the carburetor throttle.

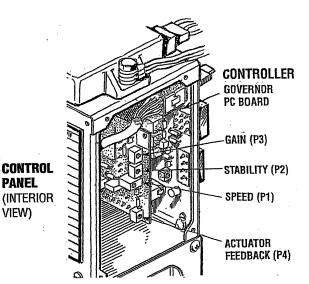
The sensor and actuator are wired thru the wiring harness to the controller (PC board).

ADJUSTMENT PROCEDURE

Speed. This adjustment is used to raise or lower the engine's speed. This generator engine is set to run at 2200 RPM.

Gain. Adjusts the overall set of the engine. If too low, the engine seems sluggish, to high causes the engine to hunt.

Stability. Adjusts the engine's response to generator load changes.


Alternator Feedback. Adjusts the stability of the speed signal to the throttle actuator.

NOTE: These adjustments are extremely delicate and require proper meters for measuring voltage and RPM'S.

ADJUSTING THE CONTROLLER PODS

Following are the basic procedures for adjusting the speed (P1). stability (P2), gain (P3), and actuator feedback (P4) pots.

The adjusting pots (except speed) have physical internal stops. Turn to the right (clockwise) to increase, turn to the left (counter-clockwise) to decrease.

Before starting the engine

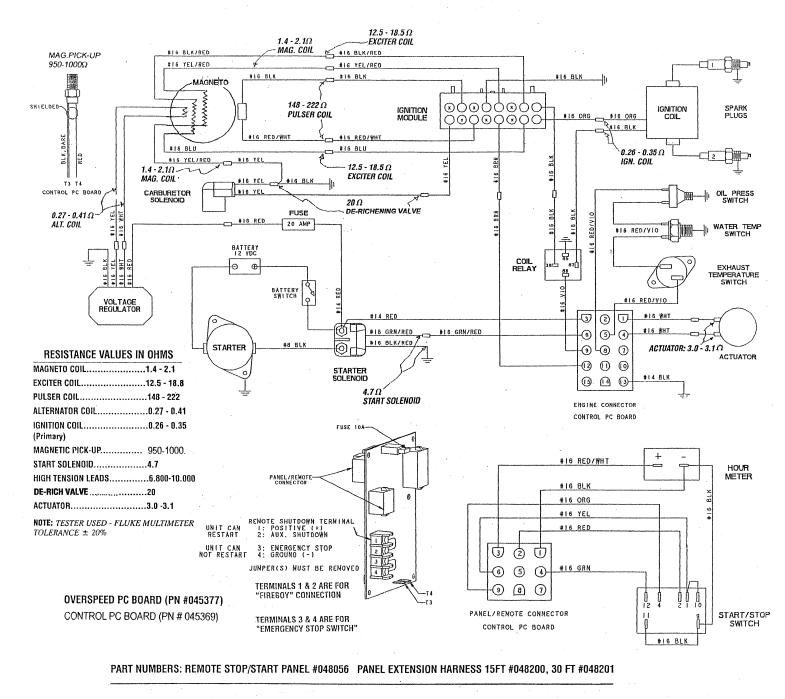
- Remove all loads and turn off the AC circuit breaker to insure that loads will not be subjected to voltage variations while these adjustment are made.
- Decrease the speed pot to prevent overspeed at start up.
- Turn the other adjustment pots to the middle position.

Start the engine, monitor speed and adjust to the hertz rating of the unit by adjusting the **SPEED** (P1) as needed. Verify that the AC voltage output is in the correct range.

Decreasing the gain (P3) dampens no load hunting. With the engine running at no load and proper speed, manually bump the throttle lever to cause hunting. If necessary, decrease the gain in small increments to eliminate hunting.

After the engine's no load speed and gain are set correctly, the AC circuit breaker can be turned on and the ships load applied. In the event of speed variations with loads applied, the stability (P2) pot may need adjustment. This adjustment also changes how the engine responds to generator load changes.

If the range of adjustment of either gain (P3) or stability (P2) pots do not correct engine hunting, the actuator feedback (P4) pot can be increased. This adjustment dampens the signals to the throttle control actuator. Increasing this adjustment will decrease the amount of throttle control resolution. Because of this, it is recommended the adjustment be made in very small increments. The gain and stability pots may now need to be readjusted.


Most hunting problems occur because of mechanical problems with the linkage between the actuator and the carburetor. Insure that the linkage is free of any debris or corrosion and that it moves freely. It is recommended that the linkage be lubricated with a graphite lubricant. Do not use oil because it tends to collect dirt and dust.

NOTE: Adjustments to one parameter may affect others, such as speed. It may be necessary to readjust some pots throughout this process.

TERBEK

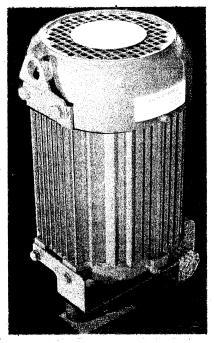
Engines & Generators

GENERATOR WIRING DIAGRAM RESISTANCE VALUES IN OHMS IN BLACK ITALIC

GREEN TO STARTER GROUND RED ISOLATION POST RED ISOLATION POST WHITE N GREEN AC BLACK 220V-50HZ WHITE GREEN 0 0 Ľ1 AC OUTPUT CONNECTIONS 120V 60Hz **CONNECTIONS FOR** Q 0 230V 50Hz N L LOAD **WESTERBEKE** Engines & Generators

45

3.0 KW GENERATOR SPECIFICATIONS


ENG	INE SPECIFICATIONS
Engine Type	Two cylinder, four stroke gasoline engine.
Bore & Stroke	2.32 x 2.36 inches (59 x 60 mm)
Total Displacement	20.01 Cubic Inches (.33 liter)
Bearings	Two main bearings.
Valve System	Overhead cam-cross flow.
Compression Ratio	9:1
Firing Order	1-2
Aspiration	Naturally aspirated.
Direction of Rotation	Counterclockwise viewed from the back end.
Inclination	25° maximum angle of operation
Dry Weight	165 lbs (75 Kg)
Governor	Electronic
dadaharan tara ke antara dari mengebahan dari dari dari dari dari dari dari dari	FUEL SYSTEM
Fuel Pump	Mechanical fuel pump.
Fuel	Unleaded 89 octane or higher gasoline.
Ignition Timing	BTDC 25° (not adjustable).
Ignition Coil	12 volt.
Flame Arrester	Metal screen type.
Carburetor	Single barrel side draft.
Fuel Consumption (Full Load)	0.4 GPH @ 2200 RPM/25 Amps
Ignition Timing	12-Volt flywheel magneto.
31	ECTRICAL SYSTEM
Start Motor	12-Volt Direct Drive-Remote Solenoid
Starting Battery	12-Volt, (-) negative ground
Battery Capacity	600-900 Cold Cranking Amps (CCA)
Battery Charging	11 Amp
DC Amperage Draw	70 Amps DC Cranking
LUI	BRICATION SYSTEM
Туре	Wet sump system trochoid type pump.
Oil Filter	Fuel flow, paper element, spin-on disposals.
Oil Capacity	1.5 qts. (91.4 L)
Oil Grade	API Service Category SJ, SL, SM, SN or better SAE 10W-30 or 15W-40

C(DOLING SYSTEM
General	Water cooled via raw water pump.
Raw Water Pump	Positive displacement type, rubber impeller, belt driven.
Raw Water Flow (into water injected	1.75 GPM (before thermostat opens)
exhaust elbow)	2.0 GPM (thermostat open)
Operating Temperature	140°F (60°C)
AC GENE	RATOR (SINGLE PHASE)
Туре	Permanent magnet generator (two pole) Brushless/capacitor (two pole)
Speed	3600 RPM / 60Hz. 3000 RPM / 50 Hz.
3.0 Kw	3.0 KW - 60 Hz single phase, 120 volts 2 wire, 25 amp.
	3.0 KW - 50 Hz single phase, 230 volts 2 wire, 13 amp.
TUNE	UP SPECIFICATIONS
Spark Plug Gap	0.032 - 0.035in (0.8 - 0.9mm)
Spark Plug Torque	11 - 15 lb-ft (15 - 20 Nm)
Bolt Torque	See TORQUING THE CYLINDER HEAD.
	DEOUIDEMENTO
Alf	R REQUIREMENTS
Engine Combustion	13 CFM (0.287 cmm)
Generator Cooling	200 CFM (5.66 cmm)
FRESH W	ATER COOLED MODELS
Cooling System	Fresh water cooled block, thermostatically

Cooling System	Fresh water cooled block, thermostatically controlled thru a heat exchanger.
Fresh Water (coolant) Pump	Positive displacement, rubber impeller belt driven
Raw Water Pump	Positive displacement, rubber impeller belt driven
Raw Water Flow (into water injected exhaust elbow)	2.5 - 3.0 GPM 9.5 - 11.3 LPM
Operating Temperature	180°F (82°C)

AC GENERATOR

PERMANENT MAGNET GENERATOR

Engine rpm at 2200 Generator turns at 3600 (60 Hz), 3000 (50Hz) 60Hz 120 volts/25 amps, 50 Hz 230 volts/13 amps

A WARNING: Do not attempt to make adjustments or repairs to the generator. the generator is maintenance free. If the generator fails (no ac output), contact your WESTERBEKE dealer or distributor.

Required Operating Speed

Run the generator first with no load applied, then at half the generators capacity, and finally loaded to its full capacity as indicted on the generators data plate. The output voltage should be checked periodically to ensure proper operation of the generating plant and the appliances it supplies. To monitor voltage and load, check it with a portable meter and ampprobe.

Generator Maintenance

Maintaining reasonable cleanliness is important. Connections of terminal boards and rectifiers may become corroded, and insulation surfaces may start conducting if salts, dust, engine exhaust, carbon, etc. are allowed to build up. Clogged ventilation openings may cause excessive heating and reduced life of windings.

In addition to periodic cleaning, the generator should be inspected for tightness of all connections, evidence of overheated terminals and loose or damaged wires.

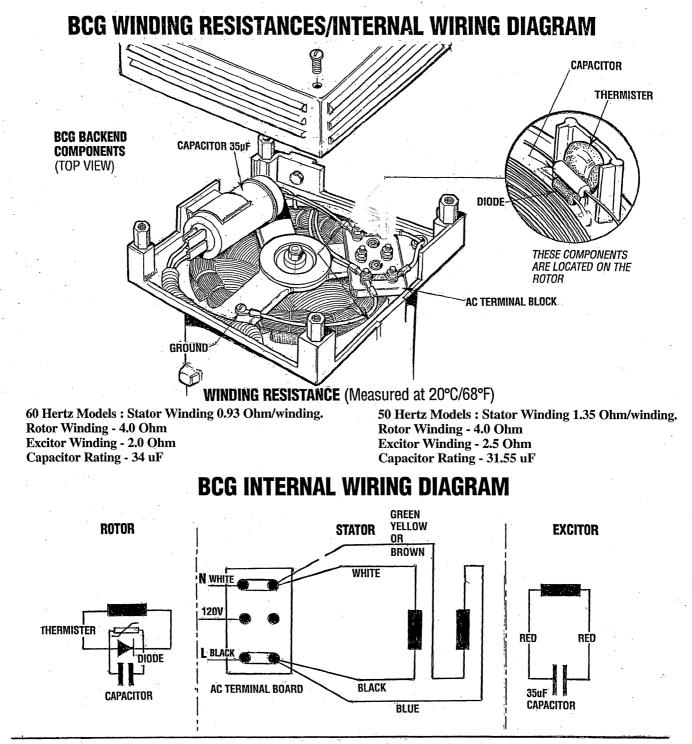
MOTOR DATA

The power required to start an electric motor is considerably more than is required to keep it running after it is started. Some motors require much more current to start them than others. Split-phase (AC) motors require more current to start, under similar circumstances, than other types. They are commonly used on easy-starting loads, such as washing machines, or where loads are applied after the motor is started, such as small power tools. Because they require 5 to 7 times as much current to start as to run, their use should be avoided, whenever possible, if the electric motor is to be driven by a small generator. Capacitor and repulsion-induction motors require from 2 to 4 times as much current to start as to run. The current required to start any motor varies with the load connected to it. An electric motor connected to an air compressor, for example, will require more current than a motor to which no load is connected.

In general, the current required to start 115-Volt motors connected to medium starting loads will be approximately as follows:

MOTOR SIZE (HP)	AMPS FOR RUNNING (AMPERES)	AMPS FOR STARTING (AMPERES)
1/6	3.2	6.4 to 22.4*
1/4	4.6	9.2 to 32.2*
1/3	5.2	10.4 to 72.8*
1/2	7.2	14.4 to 29.2*
3/4	10.2	20.4 to 40.8*
1	13	26 to 52

***NOTE:** In the above table the maximum Amps for Starting is more for some small motors than for larger ones. The reason for this is that the hardest starting types (split-phase) are not made in larger sizes.


Because the heavy surge of current needed for starting motors is required for only an instant, the generator will not be damaged if it can bring the motor up to speed in a few seconds. If difficulty is experienced in starting motors, turn off all other electrical loads and, if possible, reduce the load on the electric motor.

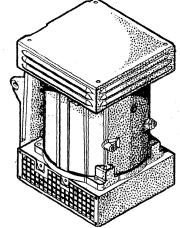
GENERATOR FAILURE

Should a failure occur in the permanent magnet generator, contact your Westerbeke dealer of the Westerbeke factory.

NOTE: It would be important to inspect the pulley and drive belt under the generator base frame.

BY-PASSING THE OVERSPEED BOARD

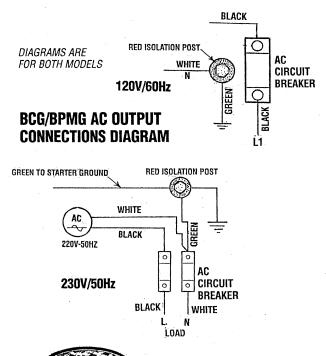
WESTERBEKE Engines & Generators 48

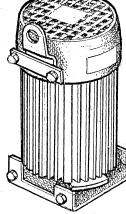

An unwanted shutdown or if the engine runs 10-15 seconds and then shuts down can be caused by a faulty over-speed board.

- 1. Refer to the Wiring Diagram in this manual.
- 2. Unplug the brown #6 wire that connects between pin #12 of the 15 pin plug connector and the ignition module. The wire plug connection is in the harness between the two components.
- **3.** Without unplugging any connections on the coil relay, place a jumper between connection #30 and #87.
- 4. Manually controlling #30 and #87, start the engine physically controlling the actuator/throttle keeping the engine speed at a low comfortable range. If the engine continues to run more than 15 seconds, a faulty overspeed board exists.

NOTE: The above should only be performed as a test. The generator with a by-passed overspeed board should not be run under normal use. This can present a hazard.

BCG/BPMG DESCRIPTION and TROUBLESHOOTING


REFER ALSO TO THE SPECIFICATION PAGE



BRUSHLESS CAPACITOR GENERATOR (BCG)

Engine RPM at 2200 generator turns at 3600 (60Hz) 3000 (50Hz) 60Hz 120 Volts/25 Amps 50Hz 230 Volts/13 Amps

NOTE: *Refer to the following page for the BCG Internal Wiring Schematic and BCG Winding Resistances.*

PERMANENT MAGNET IR GENERATOR (BPMG)

Engine RPM at 2200 generator turns at 3600 (60Hz) 3000 (50Hz) 60Hz 120 Volts/25 Amps 50Hz 230 Volts/13 Amps

TROUBLESHOOTING CHART (BCG)

,	· · · · · ·
CAUSE	FAULT
No AC Output Voltage	 Shorted Stator. Open Stator. Shorted Rotor Diode. Shorted Rotor Thermister. Shorted Rotor Capacitor. Open Rotor Diode.
Residual Voltage Line - Neutral at No Load	 Faulty Capacitor. Open Exciter Winding. Shorted Exciter Winding.
Low AC Output Voltage 60 - 100 Volts	 Faulty Rotor Diode. Faulty Rotor Winding. Faulty Exciter Capacitor.
AC Voltage Drop with Inductive Load	 Faulty Rotor Diode. Faulty Exciter Capacitor. Amperage Overload.

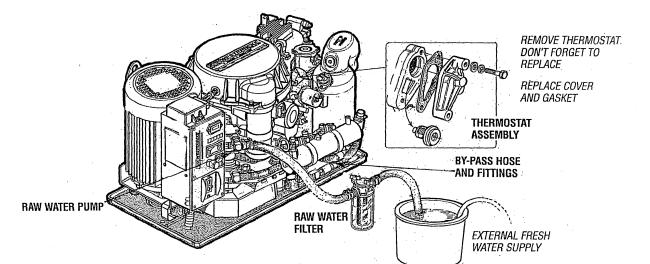
Refer to the following page for the BCG Internal Wiring Schematic and the BCG Winding Resistances.

TROUBLESHOOTING CHART (BPMG)

CAUSE		FAULT	
No AC Output Voltage	1.	Shorted Stator Winding. Open Stator Winding.	
Low AC Output Voltage 60 - 100 Volts	1.	Faulty Rotor.	
Voltage Drop Under Load	1.	Generator Overload.	

WINDING RESISTANCE (Measured at 20°C/68°F)

PM (Permanent Magnet) stator winding resistance 0.4 ohm hertz model resistance is measured between line and neutral. 50 hertz models is 0.8 ohm.


NOTE: The permanent magnet style generator can not be disassembled. If an electrical fault should occur, the generator must be replaced.

NOTE: *It would be important to inspect the pulley and drive belt under the generator base frame.*

FLUSHING THE COOLING SYSTEM

RAW WATER COOLED

Engine flushing should be performed a minimum of at least twice per operating season. More often in those areas where the unit is not subject to winter storeage. In those locations where the unit is used year round, flushing the unit every 4 months is recommended.

This procedure is best accomplished by disconnecting the water intake hose from the vessels thru-hull fitting. Close the intake valve before disconnecting the hose. Insert the hose end into a large container of fresh water.

Before starting the engine, remove the engine thermostat (replace the gasket and cover). This will ensure a full flow of water thru the engine. **Re-install the thermostat once flushing is complete.**

NOTE: Prior to flushing the engine, inspect the coolant bypass hose and its attachment fittings to insure that there are no obstructions occurring in the fittings or the hose.

Provide an external fresh water supply for the bucket to maintain the water level in the bucket while the unit is being operated during the flushing process. **CAUTION:** Do not connect an external fresh water supply directly to the engine's cooling system. This can cause flooding of the engine resulting in internal damage.

Run the unit for 10 minutes or longer to adequately flush the cooling system.

the fresh water will flush out the engines water passages and exhaust lines. If the engine is being stored and there is a probability of freezing, flush the engine with fresh water and then prior to shutting the unit down substitute the fresh water supply with a concentrated antifreeze mixture and run this through the engine to provide freeze and corrosion protection for both the engine and exhaust system.

When recommissioning, make certain the valves and seacocks are open so the engine will quickly receive fresh water.

ESTERBEKE Engines & Generators 50

ENGLISH TO METRIC CONVERSION CHART

Multiply Temperature	Ву	To get equivalent number of:
Degree Fahrenheit (°F)	(°F-32) ÷ 1.8	Degree Celsius °C)
Multiply Acceleration	Ву	To get equivalent number of:
Foot/second ² (ft/sec ²)	0.3048	Meter/second ² (m/s ²)
Inch/second ² (in./sec ²)	0.0254	Meter/second ² (m/s ²)
Multiply Torque	By	To get equivalent number of:
Pound-inch (lb·in.)	0.11298	Newton-meters (N·m)
Pound-foot (Ib-ft)	1.3558	Newton-meters (N-m)
Multiply Power	By	To get equivalent number of:
Horsepower (hp)	0.746	Kilowatts (kW)
Multiply Pressure or Stress	By	To get equivalent number of:
	0.2491	Kilopascals (kPa)
Inches of water (in. H ₂ O)		Kilopascals (kPa)
Pounds/square in. (lb/in. ²)	6.895	
Multiply Energy or Work	By	To get equivalent number of:
British Thermal Unit (Btu)	1055	Joules (J)
Foot-pound (ft-lb)	1.3558	Joules (J)
kilowatt-hour (kW-hr)	3,600,000. or 3.6 x 10 ⁶	Joules (J = one W/s)
Multiply Light	By	To get equivalent number of:
Foot candle (fc)	1.0764	Lumens/meter ² (lm/m ²)
Multiply Fuel Performance	By	To get equivalent number of:
Miles/gal (mile/gal)	0.4251	Kilometers/liter (km/L)
Gallons/mile (gal/mile)	2.3527	Liter/kilometer (L/km)
Multiply Velocity	By	To get equivalent number of:
Miles/hour (mile/hr)	1.6093	Kilometers/hour (km/hr)
Multiply Length	By	To get equivalent number of:
Inch (in.)	25.4	Millimeters (mm)
Foot (ft)	0.3048	Meters (m)
Yard (yd)	0.9144	Meters (m)
Mile (mile)	1.609	Kilometers (km)
Multiply Area	By	To get equivalent number of:
Inch ² (in. ²)	6452	Millimeters ² (mm ²)
Inch ² (in. ²)	6.45	Centimeters ² (cm ²)
Foot ² (ft ²)	0.0929	Meters ² (m ²)
Yard ² (yd ²)	0.8361	Meters ² (m ²)
Multiply Volume	By	To get equivalent number of:
Inch ³ (in. ³)	16387	Millimeters ³ (mm ³)
Inch ³ (in. ³)	16.387	Centimeters ³ (cm ³)
Inch ³ (in. ³)	0.0164	Liters (L)
Quart (qt)	0.9464	Liters (L)
Gallon (gal)	3.785	Liters (L)
Yard ³ (vd ³)	0.7646	Meters ³ (m ³)
Multiply Mass		To get equivalent number of:
Pound (lb)	By 0.4536	Kilograms (kg)
	0.4536	
Ton (ton) Ton (ton)	907.18	Kilograms (kg)
Multiply Force	0.907	Tonne (t)
Kilogram (kg)	Βγ	To get equivalent number of:
	9.807	Newtons (N)
Ounce (oz)	0.2780	Newtons (N)

WESTERBEKE Engines & Generators 51

Newtons (N)

4.448

Pound (lb)

STANDARD AND METRIC CONVERSION DATA

LENGTH-DISTANCE

Inches (in) x 25.4 = Millimeters (mm) x .0394 = Inches Feet (ft) x .305 = Meters (m) x 3.281 = Feet Miles x 1.609 = Kilometers (km) x .0621 = Miles

DISTANCE EQUIVALENTS

1 Degree of Latitude = 60 Nm = 111.120 km

1 Minute of Latitude = 1 Nm = 1.852 km

VOLUME

Cubic Inches (in³) x 16.387 = Cubic Centimeters x .061 =in³ Imperial Pints (IMP pt) x .568 = Liters (L) x 1.76 = IMP pt Imperial Quarts (IMP qt) x 1.137 = Liters (L) x .88 = IMP qt Imperial Gallons (IMP gal) x 4.546 = Liters (L) x .22 = IMP gal Imperial Quarts (IMP qt) x 1.201 = US Quarts (US qt) x .833 = IMP qt Imperial Gallons (IMP gal) x 1.201 = US Gallons (US gal) x .833 = IMP qt Imperial Gallons (IMP gal) x 1.201 = US Gallons (US gal) x .833 = IMP gal Fluid Ounces x 29.573 = Milliliters x .034 = Ounces US Pints (US pt) x .473 = Liters(L) x 2.113 = Pints US Quarts (US qt) x .946 = Liters (L) x 1.057 = Quarts US Gallons (US gal) x 3.785 = Liters (L) x .264 = Gallons

MASS-WEIGHT

Ounces (oz) x 28.35 = Grams (g) x .035 = Ounces Pounds (lb) x .454 = Kilograms (kg) x 2.205 = Pounds

PRESSURE

Pounds Per Sq In (psi) x 6.895 = Kilópascals (kPa) x .145 = psi Inches of Mercury (Hg) x .4912 = psi x 2.036 = Hg Inches of Mercury (Hg) x 3.377 = Kilopascals (kPa) x .2961 = Hg Inches of Water (H₂O) x .07355 = Inches of Mercury x 13.783 = H₂O Inches of Water (H₂O) x .03613 = psi x 27.684 = H₂O Inches of Water (H₂O) x .248 = Kilopascals (kPa) x 4.026 = H₂O

TORQUE

Pounds-Force Inches (in-lb) x .113 = Newton Meters (Nm) x 8.85 = in-lb Pounds-Force Feet (ft-lb) x 1.356 = Newton Meters (Nm) x .738 = ft-lb

VELOCITY

Miles Per Hour (MPH) x 1.609 = Kilometers Per Hour (KPH) x .621 = MPH

POWER

Horsepower (Hp) x .745 = Kilowatts (Kw) x 1.34 = MPH

FUEL CONSUMPTION

Miles Per Hour IMP (MPG) x .354 = Kilometers Per Liter (Km/L) Kilometers Per Liter (Km/L) x 2.352 = IMP MPG Miles Per Gallons US (MPG) x .425 = Kilometers Per Liter (Km/L) Kilometers Per Liter (Km/L) x 2.352 = US MPG

TEMPERATURE

Degree Fahrenheit (°F) = (°C X 1.8) + 32 Degree Celsius (°C) = (°F - 32) $\times .56$

LIQUID WEIGHTS

Diesel Oil = 1 US gallon = 7.13 lbs Fresh Water = 1 US gallon = 8.33 lbs Gasoline = 1 US gallon = 6.1 lbs Salt Water = 1 US gallon = 8.56 lbs

INDEX

AC Generator	47
Assembly	27
Assembly Procedures	6
Camshaft	
Carburetor	35
Choke Solenoid	41
Compression Test	39
Cylinder Head Cover	30
Disassembly Procedures	6
Drive Belt Adjustment	40
Drive Pulley	31
Electronic Governor	44
Flushing the Cooling System	50
Engine Adjustments	
Engine Disassembly	15
Engine Tuning	
Exhaust Valve	27
Fuel Filter	33
Fuel Pump	33
Fuses	44
Gasket Information	6
Governor-Electric	43
Heat Exchanger	19
Ignition Timing	39
Inspection and Measurement	20
Intake Valve	27
Internal Wiring Diagram	48
Lubrication	.51,52
Metric Conversion Chart	48
Oil Clearance	22
Oil Inspection	32

Oil Pressure
Oil Pump
Overspeed Switch
Overspeed Board - By-Passing
Parts Identification
Piston Rings
Pump-Raw Water
Raw Water Pump
Repair Limits
Required Tools
Resistance Values
Safety Instructions
Sealants and Lubricants Chart7
Shutdown Switches44
Siphon-BreakIV
Spark Plugs
Special Tools11
Specifications
Standard and Repair Limits
Starter Motor
Testing for Overhaul
Testing Oil Pressure
Thermostat
Timing Belt Replacement/Adjustments
Torque Specifications9
Troubleshooting Charts
Valve Clearance
Valve Seat
Water Pump Belt
Winding Resistance
Wiring Diagram
Zinc Anode

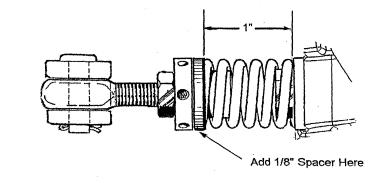
SERVICE BULLETIN

DATE: 24-Apr-15

BULLETIN NUMBER: 276

SUBJECT: Generator Drive Belt Performance

MODELS


AFFECTED: 3.5 SBCG and 3.0 BCG Gasoline Generators

DETAIL: Generator drive belt life performance improvements include a belt tension adjustment change, the addition of a spring spacer, and a new idler pulley. 3.5 SBCG generators produced on or after manufacturing date code OD (April 2015) will have these changes. Changes made are enhancements, modification to existing products in the field is not covered under warranty.

Manufacturing of new products includes, for optimum belt break in, adjusting the belt to a dimension of 1" in our assembly process as illustrated below. After the first hour of run time, if necessary, it is adjusted again to 1" prior to releasing the unit for shipment.

Important Note: Maximum performance of the drive belt and prevention of potential failure due to incorrect tension requires the belt be to adjusted to 1" at the recommended 50 hour maintenance service.

Generator drive belts for regular maintenance replacement (part numbers remain the same) will be sold as a kit with instructions that includes the required spring spacer. Replacing the pulley is not required. Initial adjustment of the belt with the spacer installed is 1". After running the unit for 1 hour, varying AC loads in the process, the belt must be adjusted again to 1". After 50 hours run time, or during the next scheduled service, inspection and adjustment to 1" is required to ensure proper belt tension.

WESTERBEKE CORPORATION Myles Standish Industrial Park, 150 John Hancock Road, Taunton, MA 02780-7319 • Tel: 508.823.7677 • Fax: 508.884.9688 www.westerbeke.com

